Recent Advances in Electrolytes for Lithium–Sulfur Batteries

The rapidly increasing demand for electrical and hybrid vehicles and stationary energy storage requires the development of “beyond Li-ion batteries” with high energy densities that exceed those of state-of-the-art Li-ion batteries. Li–S batteries, which have very high theoretical capacities and energy densities, are believed to be one of the most promising candidates. The sulfur-based electrochemical reaction requires novel electrolytes to replace the classical carbonate-based electrolyte systems inherited from Li-ion batteries because carbonates are incompatible with the intermediate polysulfides in Li–S batteries. In addition, the theoretical specific capacities and projected energy densities of Li–S batteries are difficult to achieve experimentally, mainly because of the electronically insulating nature of sulfur and lithium sulfide cathodes, and the shuttle effect; this is a serious issue associated with the dissolution and diffusion of soluble polysulfides in most potential electrolytes and causes rapid capacity fading. It is therefore highly desirable to explore, modify, and/or optimize electrolytes for Li–S batteries to address these issues and improve their capacities, cycling stabilities, rate performances, and energy densities. An overview of recent developments in electrolytes for Li–S batteries is provided with a focus on the chemistry of polysulfides in different electrolyte media, including polysulfide solubility and its relevance to battery performance.

[1]  Shaogang Wang,et al.  A Graphene–Pure‐Sulfur Sandwich Structure for Ultrafast, Long‐Life Lithium–Sulfur Batteries , 2014, Advanced materials.

[2]  Arumugam Manthiram,et al.  Highly reversible lithium/dissolved polysulfide batteries with carbon nanotube electrodes. , 2013, Angewandte Chemie.

[3]  Jiulin Wang,et al.  Towards a safe lithium-sulfur battery with a flame-inhibiting electrolyte and a sulfur-based composite cathode. , 2014, Angewandte Chemie.

[4]  Bingkun Guo,et al.  Synergistic effects of mixing sulfone and ionic liquid as safe electrolytes for lithium sulfur batteries. , 2015, ChemSusChem.

[5]  Zhan Lin,et al.  Lithium polysulfidophosphates: a family of lithium-conducting sulfur-rich compounds for lithium-sulfur batteries. , 2013, Angewandte Chemie.

[6]  J. Gerbec,et al.  Sulfur-functionalized mesoporous carbons as sulfur hosts in Li-S batteries: increasing the affinity of polysulfide intermediates to enhance performance. , 2014, ACS applied materials & interfaces.

[7]  M. Watanabe,et al.  Correlation between Battery Performance and Lithium Ion Diffusion in Glyme–Lithium Bis(trifluoromethanesulfonyl)amide Equimolar Complexes , 2012 .

[8]  Li-Jun Wan,et al.  High-safety lithium-sulfur battery with prelithiated Si/C anode and ionic liquid electrolyte , 2013 .

[9]  Xiulei Ji,et al.  Stabilizing lithium-sulphur cathodes using polysulphide reservoirs. , 2011, Nature Communications.

[10]  Shengbo Zhang,et al.  How a gel polymer electrolyte affects performance of lithium/sulfur batteries , 2013 .

[11]  Ji‐Guang Zhang,et al.  Lithium metal anodes for rechargeable batteries , 2014 .

[12]  Shengdi Zhang Role of LiNO3 in rechargeable lithium/sulfur battery , 2012 .

[13]  Guangyuan Zheng,et al.  Nanostructured sulfur cathodes. , 2013, Chemical Society reviews.

[14]  Michel Armand,et al.  A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries , 2013, Nature Communications.

[15]  H. Kim,et al.  The cycling performances of lithium–sulfur batteries in TEGDME/DOL containing LiNO3 additive , 2013, Ionics.

[16]  Jeffrey Read,et al.  A new direction for the performance improvement of rechargeable lithium/sulfur batteries , 2012 .

[17]  Kazuya Okuda,et al.  All-solid-state lithium battery with sulfur/carbon composites as positive electrode materials , 2014 .

[18]  Hee‐Tak Kim,et al.  Rechargeable Lithium Sulfur Battery I. Structural Change of Sulfur Cathode During Discharge and Charge , 2003 .

[19]  Yi Cui,et al.  Improved lithium–sulfur batteries with a conductive coating on the separator to prevent the accumulation of inactive S-related species at the cathode–separator interface , 2014 .

[20]  Minoru Matsuda,et al.  Study on the reduction species of sulfur by alkali metals in nonaqueous solvents , 1997 .

[21]  Shengbo Zhang,et al.  A simple approach for superior performance of lithium/sulphur batteries modified with a gel polymer electrolyte , 2014 .

[22]  K. Striebel,et al.  Electrochemical performance of lithium/sulfur cells with three different polymer electrolytes , 2000 .

[23]  Ryota Watanabe,et al.  All solid-state battery with sulfur electrode and thio-LISICON electrolyte , 2008 .

[24]  S. Dou,et al.  The electrochemical properties of high-capacity sulfur/reduced graphene oxide with different electrolyte systems , 2013 .

[25]  Robert Dominko,et al.  Li-S battery analyzed by UV/Vis in operando mode. , 2013, ChemSusChem.

[26]  Andrzej Lewandowski,et al.  Ionic liquids as electrolytes for Li-ion batteries—An overview of electrochemical studies , 2009 .

[27]  M. Vaezi,et al.  Improving the self-discharge behavior of sulfur-polypyrrole cathode material by LiNO3 electrolyte additive , 2014, Ionics.

[28]  Junhe Yang,et al.  High Performance C/S Composite Cathodes with Conventional Carbonate-Based Electrolytes in Li-S Battery , 2014, Scientific Reports.

[29]  F. Alloin,et al.  Electrochemical properties of ether-based electrolytes for lithium/sulfur rechargeable batteries , 2013 .

[30]  Anthony F. Hollenkamp,et al.  Lithium–sulfur batteries—the solution is in the electrolyte, but is the electrolyte a solution? , 2014 .

[31]  Feng Wu,et al.  New Desolvated Gel Electrolyte for Rechargeable Lithium Metal Sulfurized Polyacrylonitrile (S-PAN) Battery , 2014 .

[32]  H. Gasteiger,et al.  Probing the Lithium−Sulfur Redox Reactions: A Rotating-Ring Disk Electrode Study , 2014 .

[33]  Jinkui Feng,et al.  Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte , 2006 .

[34]  Ulf Tilstam,et al.  Sulfolane: A Versatile Dipolar Aprotic Solvent , 2012 .

[35]  Gareth H McKinley,et al.  Polysulfide flow batteries enabled by percolating nanoscale conductor networks. , 2014, Nano letters.

[36]  A. Hayashi,et al.  All-solid-state rechargeable lithium batteries with Li2S as a positive electrode material , 2008 .

[37]  Kai Xie,et al.  Capacity fading mechanism in lithium sulfur cells using poly(ethylene glycol)-borate ester as plasticizer for polymer electrolytes , 2013 .

[38]  Jean-Marie Tarascon,et al.  Li–S batteries: simple approaches for superior performance , 2013 .

[39]  M. Watanabe,et al.  Glyme-lithium salt equimolar molten mixtures: concentrated solutions or solvate ionic liquids? , 2012, The journal of physical chemistry. B.

[40]  H. Nagata,et al.  All-solid-state Lithium–Sulfur Batteries Using a Conductive Composite Containing Activated Carbon and Electroconductive Polymers , 2014 .

[41]  B. R. Shin,et al.  All-Solid-State Rechargeable Lithium Batteries Using LiTi2(PS4)3 Cathode with Li2S-P2S5 Solid Electrolyte , 2014 .

[42]  Jianming Zheng,et al.  Manipulating surface reactions in lithium–sulphur batteries using hybrid anode structures , 2014, Nature Communications.

[43]  Kai Xie,et al.  Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium–sulfur batteries , 2014 .

[44]  Å. Wendsjö,et al.  Crystallinity and morphology of PVdF–HFP-based gel electrolytes , 2001 .

[45]  Soojin Park,et al.  Effects of imidazolium salts on discharge performance of rechargeable lithium–sulfur cells containing organic solvent electrolytes , 2005 .

[46]  Zhengcheng Zhang,et al.  Fluorinated Electrolytes for Li-S Battery: Suppressing the Self-Discharge with an Electrolyte Containing Fluoroether Solvent , 2015 .

[47]  X. Lou,et al.  Enhancing lithium–sulphur battery performance by strongly binding the discharge products on amino-functionalized reduced graphene oxide , 2014, Nature Communications.

[48]  D. Seung,et al.  Cycling a Sulfur Electrode in Mixed Electrolytes Based on Sulfolane: Effect of Ethers , 2002 .

[49]  R. C. Agrawal,et al.  Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview , 2008 .

[50]  Doron Aurbach,et al.  On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li–Sulfur Batteries , 2009 .

[51]  M. Watanabe,et al.  Ionicity in ionic liquids: correlation with ionic structure and physicochemical properties. , 2010, Physical chemistry chemical physics : PCCP.

[52]  Emanuel Peled,et al.  Electrochemistry of a nonaqueous lithium/sulfur cell , 1983 .

[53]  Doron Aurbach,et al.  Morphological and Structural Studies of Composite Sulfur Electrodes upon Cycling by HRTEM, AFM and Raman Spectroscopy , 2010 .

[54]  A. Fisher,et al.  Anion Effects on Solid Polymer Electrolytes Containing Sulfur Based Ionic Liquid for Lithium Batteries , 2012 .

[55]  M. Hojo,et al.  Electrochemical Reduction of Elemental Sulfur in Acetonitrile , 1980 .

[56]  Masahiro Tatsumisago,et al.  Sulfur–carbon composite electrode for all-solid-state Li/S battery with Li2S–P2S5 solid electrolyte , 2011 .

[57]  Zhaolin Liu,et al.  Key parameters in design of lithium sulfur batteries , 2014 .

[58]  K. Andreas Friedrich,et al.  In-situ X-ray diffraction studies of lithium-sulfur batteries , 2013 .

[59]  Hong‐Jie Peng,et al.  Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries , 2014 .

[60]  S. Kim,et al.  Influence of Electrolyte Composition on Electrochemical Performance of Li-S Cells , 2014 .

[61]  Min-Kyu Song,et al.  A long-life, high-rate lithium/sulfur cell: a multifaceted approach to enhancing cell performance. , 2013, Nano letters.

[62]  Bruno Scrosati,et al.  Rechargeable lithium sulfide electrode for a polymer tin/sulfur lithium-ion battery , 2011 .

[63]  N. Machida,et al.  Additive effect of ionic liquids on the electrochemical property of a sulfur composite electrode for all-solid-state lithium–sulfur battery , 2014 .

[64]  Shizhao Xiong,et al.  Properties of surface film on lithium anode with LiNO3 as lithium salt in electrolyte solution for lithium–sulfur batteries , 2012 .

[65]  Bruno Scrosati,et al.  All Solid-State Lithium–Sulfur Battery Using a Glass-Type P2S5–Li2S Electrolyte: Benefits on Anode Kinetics , 2015 .

[66]  T. Fujimori,et al.  Lithium ion solvation in room-temperature ionic liquids involving bis(trifluoromethanesulfonyl) imide anion studied by Raman spectroscopy and DFT calculations. , 2007, The journal of physical chemistry. B.

[67]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[68]  A. Lewandowski,et al.  Ionic liquids as electrolytes , 2006 .

[69]  Y. Alias,et al.  Electrochemistry of sulfur and polysulfides in ionic liquids. , 2011, The journal of physical chemistry. B.

[70]  C. Angell,et al.  Ionic liquids: past, present and future. , 2012, Faraday discussions.

[71]  B. Scrosati,et al.  Nanocomposite polymer electrolytes and their impact on the lithium battery technology , 2000 .

[72]  Jie Gao,et al.  Effects of Liquid Electrolytes on the Charge–Discharge Performance of Rechargeable Lithium/Sulfur Batteries: Electrochemical and in-Situ X-ray Absorption Spectroscopic Studies , 2011 .

[73]  Leigang Xue,et al.  Enhanced performance of sulfone-based electrolytes at lithium ion battery electrodes, including the LiNi0.5Mn1.5O4 high voltage cathode , 2014 .

[74]  Kikuko Hayamizu,et al.  How ionic are room-temperature ionic liquids? An indicator of the physicochemical properties. , 2006, The journal of physical chemistry. B.

[75]  Wook Ki Jung,et al.  Encapsulated Monoclinic Sulfur for Stable Cycling of Li–S Rechargeable Batteries , 2013, Advanced materials.

[76]  Hee‐Tak Kim,et al.  Binary electrolyte based on tetra(ethylene glycol) dimethyl ether and 1,3-dioxolane for lithium-sulfur battery , 2002 .

[77]  Jou-Hyeon Ahn,et al.  Rechargeable lithium/sulfur battery with liquid electrolytes containing toluene as additive , 2008 .

[78]  A. Manthiram,et al.  High-Performance Li-S Batteries with an Ultra-lightweight MWCNT-Coated Separator. , 2014, The journal of physical chemistry letters.

[79]  Yi Cui,et al.  High-capacity micrometer-sized Li2S particles as cathode materials for advanced rechargeable lithium-ion batteries. , 2012, Journal of the American Chemical Society.

[80]  Kang Xu,et al.  Sulfone-based electrolytes for lithium-ion batteries , 2002 .

[81]  Yang‐Kook Sun,et al.  Progress in lithium-sulfur batteries: the effective role of a polysulfide-added electrolyte as buffer to prevent cathode dissolution. , 2013, ChemSusChem.

[82]  Mingtao Li,et al.  Polymer gel electrolytes containing sulfur-based ionic liquids in lithium battery applications at room temperature , 2013, Journal of Applied Electrochemistry.

[83]  Shiro Seki,et al.  Solvate Ionic Liquid Electrolyte for Li–S Batteries , 2013 .

[84]  K. W. Kim,et al.  Preparation and characterization of plasticized polymer electrolytes based on the PVdF-HFP copolymer for lithium/sulfur battery , 2002 .

[85]  H. Nagata,et al.  Activation of sulfur active material in an all-solid-state lithium–sulfur battery , 2014 .

[86]  H. Althues,et al.  Reduced polysulfide shuttle in lithium–sulfur batteries using Nafion-based separators , 2014 .

[87]  L. Nazar,et al.  New approaches for high energy density lithium-sulfur battery cathodes. , 2013, Accounts of chemical research.

[88]  Li Wang,et al.  Charge/discharge characteristics of sulfurized polyacrylonitrile composite with different sulfur content in carbonate based electrolyte for lithium batteries , 2012 .

[89]  D. Seung,et al.  Cycling a Sulfur Electrode in Electrolytes Based on Sulfolane and Linear Ethers (Glymes) in an LiCF3SO3 Solution , 2002 .

[90]  J. Tarascon,et al.  An aqueous electrolyte rechargeable Li-ion/polysulfide battery , 2014 .

[91]  Cheng-Fu Yang,et al.  Prepare dispersed CIS nano-scale particles and spray coating CIS absorber layers using nano-scale precursors , 2014, Nanoscale Research Letters.

[92]  Xie Kai,et al.  Effect of LiBOB as additive on electrochemical properties of lithium–sulfur batteries , 2012, Ionics.

[93]  Z. Wen,et al.  Gel polymer electrolyte with ionic liquid for high performance lithium sulfur battery , 2012 .

[94]  Zhan Lin,et al.  Lithium-Sulfur Batteries: from Liquid to Solid Cells? , 2015 .

[95]  Jou-Hyeon Ahn,et al.  Microporous Poly(vinylidene fluoride-co-hexafluoropropylene) Polymer Electrolytes for Lithium/Sulfur Cells , 2006 .

[96]  Elton J. Cairns,et al.  Self-discharge of lithium–sulfur cells using stainless-steel current-collectors , 2005 .

[97]  Tae-Hyun Nam,et al.  Discharge behavior of lithium/sulfur cell with TEGDME based electrolyte at low temperature , 2006 .

[98]  Pu Chen,et al.  Fabrication and Characterization of an Effective Polymer Nanocomposite Electrolyte Membrane for High Performance Lithium/Sulfur Batteries , 2013 .

[99]  G. Veith,et al.  Highly dispersed sulfur in a porous aromatic framework as a cathode for lithium-sulfur batteries. , 2012, Chemical communications.

[100]  Zhongqiang Shan,et al.  Sulfur electrode modified by bifunctional nafion/γ-Al2O3 membrane for high performance lithium–sulfur batteries , 2015 .

[101]  Lin Gu,et al.  Smaller sulfur molecules promise better lithium-sulfur batteries. , 2012, Journal of the American Chemical Society.

[102]  M. Buchmeiser,et al.  Structure-Related Electrochemistry of Sulfur-Poly(acrylonitrile) Composite Cathode Materials for Rechargeable Lithium Batteries , 2011 .

[103]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[104]  Jun Jin,et al.  Highly dispersed sulfur in ordered mesoporous carbon sphere as a composite cathode for rechargeable , 2011 .

[105]  Elton J. Cairns,et al.  N-Methyl-(n-butyl)pyrrolidinium bis(trifluoromethanesulfonyl)imide-LiTFSI–poly(ethylene glycol) dimethyl ether mixture as a Li/S cell electrolyte , 2008 .

[106]  Patrik Johansson,et al.  A review of electrolytes for lithium–sulphur batteries , 2014 .

[107]  Linda F. Nazar,et al.  Sulfur Speciation in Li–S Batteries Determined by Operando X-ray Absorption Spectroscopy , 2013 .

[108]  R. van Eldik,et al.  Gutmann donor and acceptor numbers for ionic liquids. , 2012, Chemistry.

[109]  Jie Gao,et al.  Key Parameters Governing the Energy Density of Rechargeable Li/S Batteries. , 2014, The journal of physical chemistry letters.

[110]  Jiulin Wang,et al.  Nonflammable electrolyte for rechargeable lithium battery with sulfur based composite cathode materials , 2013 .

[111]  Shengbo Zhang,et al.  Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions , 2013 .

[112]  S. Licht,et al.  A Solid Sulfur Cathode for Aqueous Batteries , 1993, Science.

[113]  W. Henderson,et al.  Complexes of Lithium Imide Salts with Tetraglyme and Their Polyelectrolyte Composite Materials , 2004 .

[114]  Shizhao Xiong,et al.  On the role of polysulfides for a stable solid electrolyte interphase on the lithium anode cycled in lithium–sulfur batteries , 2013 .

[115]  C. Liang,et al.  Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries. , 2013, ACS nano.

[116]  J. Tübke,et al.  In-Situ Raman Investigation of Polysulfide Formation in Li-S Cells , 2013 .

[117]  Shengbo Zhang,et al.  Improved Cyclability of Liquid Electrolyte Lithium/Sulfur Batteries by Optimizing Electrolyte/Sulfur Ratio , 2012 .

[118]  N. Balsara,et al.  Effect of Lithium Polysulfides on the Morphology of Block Copolymer Electrolytes , 2011 .

[119]  Junho Ahn,et al.  Electrochemical properties and interfacial stability of (PEO)10LiCF3SO3–TinO2n−1 composite polymer electrolytes for lithium/sulfur battery , 2002 .

[120]  Chunsheng Wang,et al.  In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries. , 2013, ACS nano.

[121]  J. Dai,et al.  Photocatalytic reduction synthesis of SrTiO3-graphene nanocomposites and their enhanced photocatalytic activity , 2014, Nanoscale Research Letters.

[122]  Kai Xie,et al.  Electrochemical performance of lithium/sulfur batteries using perfluorinated ionomer electrolyte with lithium sulfonyl dicyanomethide functional groups as functional separator , 2013 .

[123]  M. Watanabe,et al.  Criteria for solvate ionic liquids. , 2014, Physical chemistry chemical physics : PCCP.

[124]  D. Brouillette,et al.  Apparent Molar Volume, Heat Capacity, and Conductance of Lithium Bis(trifluoromethylsulfone)imide in Glymes and Other Aprotic Solvents , 1998 .

[125]  Li Li,et al.  Sulfur/Polythiophene with a Core/Shell Structure: Synthesis and Electrochemical Properties of the Cathode for Rechargeable Lithium Batteries , 2011 .

[126]  Jiulin Wang,et al.  Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li–S batteries , 2012 .

[127]  Jou-Hyeon Ahn,et al.  Effect of sulfur loading on energy density of lithium sulfur batteries , 2014 .

[128]  Sébastien Patoux,et al.  New insights into the limiting parameters of the Li/S rechargeable cell , 2012 .

[129]  Q. Qu,et al.  Core-shell sulfur@polypyrrole composites as high-capacity materials for aqueous rechargeable batteries. , 2013, Nanoscale.

[130]  O. Borodin,et al.  Lithium Iodide as a Promising Electrolyte Additive for Lithium–Sulfur Batteries: Mechanisms of Performance Enhancement , 2015, Advanced materials.

[131]  Kunlun Hong,et al.  Anomalous high ionic conductivity of nanoporous β-Li3PS4. , 2013, Journal of the American Chemical Society.

[132]  Jianming Zheng,et al.  How to Obtain Reproducible Results for Lithium Sulfur Batteries , 2013 .

[133]  Atsushi Unemoto,et al.  Development of bulk-type all-solid-state lithium-sulfur battery using LiBH4 electrolyte , 2014 .

[134]  Jingying Xie,et al.  Lithium storage in conductive sulfur-containing polymers , 2004 .

[135]  Pu Chen,et al.  Stabilizing lithium/sulfur batteries by a composite polymer electrolyte containing mesoporous silica particles , 2014 .

[136]  Julian L. Roberts,et al.  Electrochemical reduction of sulfur in aprotic solvents , 1973 .

[137]  Jou-Hyeon Ahn,et al.  Discharge process of Li/PVdF/S cells at room temperature , 2006 .

[138]  Zhonghua Gu,et al.  Electrochemical characterization and performance improvement of lithium/sulfur polymer batteries , 2005 .

[139]  Yongju Jung,et al.  The effect of solvent component on the discharge performance of Lithium–sulfur cell containing various organic electrolytes , 2004 .

[140]  J. Caruso,et al.  Spectroscopic studies of solvation in sulfolane , 1973 .

[141]  M. Watanabe,et al.  Preparation and transport properties of novel lithium ionic liquids , 2004 .

[142]  Jun Liu,et al.  A Soft Approach to Encapsulate Sulfur: Polyaniline Nanotubes for Lithium‐Sulfur Batteries with Long Cycle Life , 2012, Advanced materials.

[143]  L. Nazar,et al.  Unique behaviour of nonsolvents for polysulphides in lithium–sulphur batteries , 2014 .

[144]  M. Watanabe,et al.  Reversibility of electrochemical reactions of sulfur supported on inverse opal carbon in glyme-Li salt molten complex electrolytes. , 2011, Chemical communications.

[145]  N. Wu,et al.  Understanding dynamics of polysulfide dissolution and re-deposition in working lithium–sulfur battery by in-operando transmission X-ray microscopy , 2014 .

[146]  Naixin Xu,et al.  A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries , 2002 .

[147]  Emanuel Peled,et al.  Lithium Sulfur Battery Oxidation/Reduction Mechanisms of Polysulfides in THF Solutions , 1988 .

[148]  M. Watanabe,et al.  Chelate Effects in Glyme/Lithium Bis(trifluoromethanesulfonyl)amide Solvate Ionic Liquids, Part 2: Importance of Solvate-Structure Stability for Electrolytes of Lithium Batteries , 2014 .

[149]  K. M. Abraham,et al.  A Lithium/Dissolved Sulfur Battery with an Organic Electrolyte , 1979 .

[150]  Xiao Xing Liang,et al.  Improved cycling performances of lithium sulfur batteries with LiNO 3-modified electrolyte , 2011 .

[151]  X. Lou,et al.  Confining sulfur in double-shelled hollow carbon spheres for lithium-sulfur batteries. , 2012, Angewandte Chemie.

[152]  E. Karaseva,et al.  Influence of Lithium Salts on Physicochemical Properties of Lithium Polysulphide Solutions in Sulfolane , 2009 .

[153]  M. Engelhard,et al.  Ionic liquid-enhanced solid state electrolyte interface (SEI) for lithium–sulfur batteries , 2013 .

[154]  Dipan Kundu,et al.  Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries , 2014, Nature Communications.

[155]  Kai Xie,et al.  Application of lithiated Nafion ionomer film as functional separator for lithium sulfur cells , 2012 .

[156]  Fuminori Mizuno,et al.  All-solid-state Li/S batteries with highly conductive glass–ceramic electrolytes , 2003 .

[157]  Shengbo Zhang A Concept for Making Poly(ethylene oxide) Based Composite Gel Polymer Electrolyte Lithium/Sulfur Battery , 2013 .

[158]  Galen D. Stucky,et al.  Sulfur infiltrated mesoporous graphene–silica composite as a polysulfide retaining cathode material for lithium–sulfur batteries , 2014 .

[159]  L. Archer,et al.  Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. , 2011, Angewandte Chemie.

[160]  Taeeun Yim,et al.  Effect of chemical reactivity of polysulfide toward carbonate-based electrolyte on the electrochemical performance of Li–S batteries , 2013 .

[161]  Linda F. Nazar,et al.  Surface‐Initiated Growth of Thin Oxide Coatings for Li–Sulfur Battery Cathodes , 2012 .

[162]  Bruno Scrosati,et al.  Characteristics of Li2S8-tetraglyme catholyte in a semi-liquid lithium-sulfur battery , 2014 .

[163]  Petr Novák,et al.  Importance of ‘unimportant’ experimental parameters in Li–S battery development , 2014 .

[164]  Jun Chen,et al.  Sulfur–mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries , 2008 .

[165]  Nansheng Xu,et al.  Sulfur Composite Cathode Materials for Rechargeable Lithium Batteries , 2003 .

[166]  Yuriy V. Mikhaylik,et al.  Polysulfide Shuttle Study in the Li/S Battery System , 2004 .

[167]  R. D. Rauh,et al.  Formation of lithium polysulfides in aprotic media , 1977 .

[168]  H. Dai,et al.  Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. , 2011, Nano letters.

[169]  Rezan Demir‐Cakan Targeting the role of lithium sulphide formation for the rapid capacity fading in lithium-sulphur batteries , 2015 .

[170]  Zhanqiang Liu,et al.  Scotch-tape-like exfoliation of graphite assisted with elemental sulfur and graphene–sulfur composites for high-performance lithium-sulfur batteries , 2013 .

[171]  Xiao-Guang Sun,et al.  Lithium-sulfur batteries based on nitrogen-doped carbon and an ionic-liquid electrolyte. , 2012, ChemSusChem.

[172]  Jing Liang,et al.  A quantum-chemical study on the discharge reaction mechanism of lithium-sulfur batteries , 2013 .

[173]  Weikun Wang,et al.  The electrochemical performance of lithium–sulfur batteries with LiClO4 DOL/DME electrolyte , 2010 .

[174]  Jun Lu,et al.  An effective approach to protect lithium anode and improve cycle performance for Li-S batteries. , 2014, ACS applied materials & interfaces.

[175]  Jens Tübke,et al.  Cell energy density and electrolyte/sulfur ratio in Li–S cells , 2014 .

[176]  E. Peled,et al.  Lithium‐Sulfur Battery: Evaluation of Dioxolane‐Based Electrolytes , 1989 .

[177]  J. Tarascon,et al.  Analytical detection of soluble polysulphides in a modified Swagelok cell , 2011 .

[178]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[179]  M. Watanabe,et al.  Physicochemical Properties of Glyme–Li Salt Complexes as a New Family of Room-temperature Ionic Liquids , 2010 .

[180]  A. Hayashi,et al.  High-capacity Li2S–nanocarbon composite electrode for all-solid-state rechargeable lithium batteries , 2012 .

[181]  Guangyuan Zheng,et al.  A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage , 2013 .

[182]  M. Watanabe,et al.  Solvent Effect of Room Temperature Ionic Liquids on Electrochemical Reactions in Lithium–Sulfur Batteries , 2013 .

[183]  Jou-Hyeon Ahn,et al.  Rechargeable lithium/sulfur battery with suitable mixed liquid electrolytes , 2007 .

[184]  Yarong Wang,et al.  An aqueous dissolved polysulfide cathode for lithium–sulfur batteries , 2014 .

[185]  Zhijun Ling,et al.  Polymer lithium cells with sulfur composites as cathode materials , 2003 .

[186]  Bruno Scrosati,et al.  Moving to a Solid‐State Configuration: A Valid Approach to Making Lithium‐Sulfur Batteries Viable for Practical Applications , 2010, Advanced materials.

[187]  A. Manthiram,et al.  Bifunctional Separator with a Light‐Weight Carbon‐Coating for Dynamically and Statically Stable Lithium‐Sulfur Batteries , 2014 .

[188]  Kyu-Tae Lee,et al.  Inhibiting the shuttle effect in lithium–sulfur batteries using a layer-by-layer assembled ion-permselective separator , 2014 .

[189]  Michael F Toney,et al.  In Operando X-ray diffraction and transmission X-ray microscopy of lithium sulfur batteries. , 2012, Journal of the American Chemical Society.

[190]  Hua Zhao,et al.  Glymes as Versatile Solvents for Chemical Reactions and Processes: from the Laboratory to Industry. , 2014, RSC advances.

[191]  Arumugam Manthiram,et al.  Lithium–sulphur batteries with a microporous carbon paper as a bifunctional interlayer , 2012, Nature Communications.

[192]  Shengbo Zhang Understanding of Sulfurized Polyacrylonitrile for Superior Performance Lithium/Sulfur Battery , 2014 .

[193]  Emanuel Peled,et al.  The electrochemical behavior of polysulfides in tetrahydrofuran , 1985 .

[194]  Kaoru Dokko,et al.  Anionic Effects on Solvate Ionic Liquid Electrolytes in Rechargeable Lithium–Sulfur Batteries , 2013 .

[195]  Jun-Young Jang,et al.  Raman Spectroscopic and X-ray Diffraction Studies of Sulfur Composite Electrodes during Discharge and Charge , 2012 .

[196]  Zhiwei Zhang,et al.  3D Interconnected Porous Carbon Aerogels as Sulfur Immobilizers for Sulfur Impregnation for Lithium‐Sulfur Batteries with High Rate Capability and Cycling Stability , 2014 .

[197]  Doron Aurbach,et al.  Sulfur‐Impregnated Activated Carbon Fiber Cloth as a Binder‐Free Cathode for Rechargeable Li‐S Batteries , 2011, Advanced materials.

[198]  Jiulin Wang,et al.  TPPi as a flame retardant for rechargeable lithium batteries with sulfur composite cathodes. , 2014, Chemical Communications.

[199]  Arumugam Manthiram,et al.  Activated Li2S as a High-Performance Cathode for Rechargeable Lithium-Sulfur Batteries. , 2014, The journal of physical chemistry letters.

[200]  Nansheng Xu,et al.  Sulfur-carbon nano-composite as cathode for rechargeable lithium battery based on gel electrolyte , 2002 .

[201]  L. V. Morozova,et al.  Protected bis(hydroxyorganyl) polysulfides as modifiers of Li/S battery electrolyte , 2011 .

[202]  A. Fisher,et al.  Solid polymer electrolytes with sulfur based ionic liquid for lithium batteries , 2011 .

[203]  J. Dahn,et al.  Rechargeable Lithium Batteries with Aqueous Electrolytes , 1994, Science.

[204]  Xueping Gao,et al.  Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres , 2010 .

[205]  K. R. Seddon,et al.  On the dissolution of non-metallic solid elements (sulfur, selenium, tellurium and phosphorus) in ionic liquids. , 2010, Chemical communications.

[206]  Ryuichi Arakawa,et al.  Electrochemical reactions of lithium-sulfur batteries: an analytical study using the organic conversion technique. , 2014, Physical chemistry chemical physics : PCCP.

[207]  Guoqiang Ma,et al.  A shuttle effect free lithium sulfur battery based on a hybrid electrolyte. , 2014, Physical chemistry chemical physics : PCCP.

[208]  S. Seki,et al.  Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes. , 2011, Journal of the American Chemical Society.

[209]  Nobuya Machida,et al.  Electrochemical properties of sulfur as cathode materials in a solid-state lithium battery with inorganic solid electrolytes , 2004 .

[210]  Shengbo Zhang New insight into liquid electrolyte of rechargeable lithium/sulfur battery , 2013 .

[211]  Pu Chen,et al.  Simple, scalable, and economical preparation of sulfur–PAN composite cathodes for Li/S batteries , 2014 .

[212]  Hyungsun Kim,et al.  Electrochemical Properties of Binary Electrolytes for Lithium-sulfur Batteries , 2011 .

[213]  Nancy J. Dudney,et al.  Phosphorous Pentasulfide as a Novel Additive for High‐Performance Lithium‐Sulfur Batteries , 2013 .

[214]  F. Alloin,et al.  Revisiting TEGDME/DIOX Binary Electrolytes for Lithium/Sulfur Batteries: Importance of Solvation Ability and Additives , 2013 .

[215]  K. W. Kim,et al.  Electrochemical properties of lithium sulfur cells using PEO polymer electrolytes prepared under three different mixing conditions , 2007 .

[216]  Feng Li,et al.  A Flexible Sulfur‐Graphene‐Polypropylene Separator Integrated Electrode for Advanced Li–S Batteries , 2015, Advanced materials.

[217]  Sébastien Patoux,et al.  Lithium/sulfur cell discharge mechanism: an original approach for intermediate species identification. , 2012, Analytical chemistry.

[218]  Zhian Zhang,et al.  Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries , 2014 .

[219]  A. Hayashi,et al.  Li 2 S nanocomposites underlying high-capacity and cycling stability in all-solid-state lithium-sulfur batteries , 2015 .

[220]  S. Pantelides,et al.  Formation of Large Polysulfide Complexes during the Lithium-Sulfur Battery Discharge , 2014 .

[221]  Shengbo Zhang,et al.  Effect of Discharge Cutoff Voltage on Reversibility of Lithium/Sulfur Batteries with LiNO3-Contained Electrolyte , 2012 .

[222]  Kaoru Dokko,et al.  Ionic Liquid Electrolytes for Lithium–Sulfur Batteries , 2013 .

[223]  Shengbo Zhang Binder Based on Polyelectrolyte for High Capacity Density Lithium/Sulfur Battery , 2012 .

[224]  Hee‐Tak Kim,et al.  Rechargeable Lithium Sulfur Battery II. Rate Capability and Cycle Characteristics , 2003 .

[225]  Kwang Man Kim,et al.  Preparation and electrochemical properties of lithium–sulfur polymer batteries , 2002 .

[226]  Shizhao Xiong,et al.  Analysis of the solid electrolyte interphase formed with an ionic liquid electrolyte for lithium-sulfur batteries , 2014 .

[227]  Soo-Jin Park,et al.  Effect of imidazolium cation on cycle life characteristics of secondary lithium–sulfur cells using liquid electrolytes , 2007 .

[228]  Bruno Scrosati,et al.  A lithium-sulfur battery using a solid, glass-type P2S5-Li2S electrolyte , 2013 .

[229]  D. Aurbach,et al.  The Use of Redox Mediators for Enhancing Utilization of Li2S Cathodes for Advanced Li-S Battery Systems. , 2014, The journal of physical chemistry letters.

[230]  H. Moon,et al.  Chelate effects in glyme/lithium bis(trifluoromethanesulfonyl)amide solvate ionic liquids. I. Stability of solvate cations and correlation with electrolyte properties. , 2014, The journal of physical chemistry. B.

[231]  Takeshi Kobayashi,et al.  All-solid-state Li–sulfur batteries with mesoporous electrode and thio-LISICON solid electrolyte , 2013 .

[232]  Khalil Amine,et al.  Ultrasound Assisted Design of Sulfur/Carbon Cathodes with Partially Fluorinated Ether Electrolytes for Highly Efficient Li/S Batteries , 2013, Advanced materials.

[233]  Jin Ma,et al.  Enhanced cycle performance of lithium-sulfur batteries using a separator modified with a PVDF-C layer. , 2014, ACS applied materials & interfaces.

[234]  J. Hallett,et al.  Salts dissolved in salts: ionic liquid mixtures , 2011 .

[235]  Guochun Li,et al.  Sulfur/polyacrylonitrile/carbon multi-composites as cathode materials for lithium/sulfur battery in the concentrated electrolyte , 2014 .

[236]  Li-Jun Wan,et al.  Encapsulation of Sulfur in a Hollow Porous Carbon Substrate for Superior Li‐S Batteries with Long Lifespan , 2013 .

[237]  H. Byon,et al.  N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide-based organic electrolyte for high performance lithium–sulfur batteries , 2013 .

[238]  W. Cho,et al.  Polysulfide dissolution control: the common ion effect. , 2013, Chemical communications.

[239]  Rong Xu,et al.  Embedding sulfur in MOF-derived microporous carbon polyhedrons for lithium-sulfur batteries. , 2013, Chemistry.

[240]  W. J. Chung,et al.  Binary sulfone/ether-based electrolytes for rechargeable lithium-sulfur batteries , 2014 .

[241]  Masahiro Tatsumisago,et al.  Electrochemical Performance of All-Solid-State Li/S Batteries with Sulfur-Based Composite Electrodes Prepared by Mechanical Milling at High Temperature , 2013 .

[242]  Fuminori Mizuno,et al.  Rechargeable lithium batteries, using sulfur-based cathode materials and Li2S–P2S5 glass-ceramic electrolytes , 2004 .

[243]  Pu Chen,et al.  A novel polymer electrolyte to improve the cycle life of high performance lithium–sulfur batteries , 2013 .

[244]  Zhengcheng Zhang,et al.  Improved performance of lithium–sulfur battery with fluorinated electrolyte , 2013 .

[245]  Junho Ahn,et al.  Self-discharge characteristics of lithium/sulfur batteries using TEGDME liquid electrolyte , 2006 .

[246]  Arumugam Manthiram,et al.  A class of polysulfide catholytes for lithium-sulfur batteries: energy density, cyclability, and voltage enhancement. , 2015, Physical chemistry chemical physics : PCCP.

[247]  D. Aurbach,et al.  High‐Performance Lithium–Sulfur Batteries Based on Ionic‐Liquid Electrolytes with Bis(fluorolsufonyl)imide Anions and Sulfur‐Encapsulated Highly Disordered Activated Carbon , 2014 .