High-pressure STM study of NO reduction by CO on Pt(1 0 0)

[1]  G. Smith,et al.  3D atom probe study of gas adsorption and reaction on alloy catalyst surfaces II: Results on Pt and Pt–Rh , 2007 .

[2]  S. Bobaru High-pressure STM studies of oxidation catalysis , 2006 .

[3]  G. Zgrablich,et al.  Study of oscillations and pattern formation in the NO + CO reaction on Pt(100) surfaces through dynamic Monte Carlo simulation: toward a realistic model. , 2006, The journal of physical chemistry. B.

[4]  C. J. Weststrate,et al.  Synchrotron XPS and desorption study of the NO chemistry on a stepped Pt surface , 2006 .

[5]  B. Hammer,et al.  Structure and reactivity of surface oxides on Pt(110) during catalytic CO oxidation. , 2005, Physical review letters.

[6]  D. P. Woodruff,et al.  The temperature dependence of the interaction of NO + CO on Pt{1 0 0} , 2003 .

[7]  G. Kramer,et al.  Mechanism and dynamics of the CO-induced lifting of the Pt(100) surface reconstruction. , 2003, Physical review letters.

[8]  J. Frenken,et al.  CO oxidation on Pt(110): scanning tunneling microscopy inside a high-pressure flow reactor. , 2002, Physical review letters.

[9]  R. Farrauto,et al.  Automobile exhaust catalysts , 2001 .

[10]  Jürgen Hafner,et al.  NO Reduction by CO on the Pt(100) Surface: A Density Functional Theory Study , 2001 .

[11]  J. Hoebink,et al.  NO reduction by CO over automotive exhaust gas catalysts in the presence of O2 , 2001 .

[12]  B. E. Nieuwenhuys The Surface Science Approach Toward Understanding Automotive Exhaust Conversion Catalysis at the Atomic Level , 2000 .

[13]  Bernard Delmon,et al.  Catalytic removal of NO , 1998 .

[14]  J. Frenken,et al.  The “Reactor STM”: A scanning tunneling microscope for investigation of catalytic surfaces at semi-industrial reaction conditions , 1998 .

[15]  Michael Bowker,et al.  The basis and applications of heterogeneous catalysis , 1998 .

[16]  A. Mikhailov,et al.  Delay-induced chaos in catalytic surface reactions , 1997 .

[17]  D. King,et al.  Energetics and kinetics of CO and NO adsorption on Pt{100}: Restructuring and lateral interactions , 1996 .

[18]  Mikhailov,et al.  Delay-induced chaos in catalytic surface reactions: NO reduction on Pt(100). , 1995, Physical review letters.

[19]  W. H. Weinberg,et al.  Lattice‐gas model mimicking the NO+CO reaction on Pt(100) , 1994 .

[20]  A. Borg,et al.  STM studies of clean, CO- and O2-exposed Pt(100)-hex-R0.7° , 1994 .

[21]  K. Taylor Nitric oxide catalysis in automotive exhaust systems , 1993 .

[22]  D. King,et al.  Surface restructuring dynamics in CO adsorption, desorption, and reaction with NO on Pt{100} , 1993 .

[23]  K. Krischer,et al.  Bifurcation analysis of the three‐variable model for the NO+CO reaction on Pt surfaces , 1992 .

[24]  Gerhard Ertl,et al.  Kinetic oscillations in the NO + CO reaction on Pt(100): Experiments and mathematical modeling , 1991 .

[25]  Gerhard Ertl,et al.  THE MECHANISM OF THE EXPLOSIVE NO + CO REACTION ON PT(100) : EXPERIMENTS AND MATHEMATICAL MODELING , 1991 .

[26]  R. Masel,et al.  A TPD study of nitric oxide decomposition on Pt(100), Pt(411) and Pt(211) , 1989 .

[27]  R. J. Behm,et al.  Direct observation of a nucleation and growth process on an atomic scale , 1987 .

[28]  W. Hosler,et al.  Defects on the Pt(100) surface and their influence on surface reactions - A scanning tunneling microscopy study , 1986, IBM J. Res. Dev..

[29]  R. Masel An Experimental Test of Various Models of the Active Site for Nitric Oxide Reduction on Platinum , 1986 .

[30]  L. Schmidt,et al.  The NO + CO reaction on Pt(100) , 1985 .

[31]  P. R. Bevington,et al.  Data Reduction and Error Analysis for the Physical Sciences , 1969 .