Future air pollution in the Shared Socio-economic Pathways

[1]  Wolfgang Lutz,et al.  The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100 , 2017, Global environmental change : human and policy dimensions.

[2]  Jesus Crespo Cuaresma,et al.  Income projections for climate change research: A framework based on human capital dynamics , 2017 .

[3]  M. Strubegger,et al.  The marker quantification of the Shared Socioeconomic Pathway 2: A middle-of-the-road scenario for the 21st century , 2017 .

[4]  P. Kyle,et al.  Land-use futures in the shared socio-economic pathways , 2017 .

[5]  M. Kainuma,et al.  SSP3: AIM implementation of Shared Socioeconomic Pathways , 2017 .

[6]  K. Riahi,et al.  The Shared Socio-economic Pathways : Trajectories for human development and global environmental change , 2017 .

[7]  P. Kyle,et al.  The SSP4: A world of deepening inequality , 2017 .

[8]  M. Strubegger,et al.  Shared Socio-Economic Pathways of the Energy Sector – Quantifying the Narratives , 2017 .

[9]  J. Eom,et al.  The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview , 2017 .

[10]  C. Müller,et al.  Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm , 2017 .

[11]  K. Calvin,et al.  Fossil-fueled development (SSP5): An energy and resource intensive scenario for the 21st century , 2017 .

[12]  Valentina Bosetti,et al.  The WITCH 2016 Model - Documentation and Implementation of the Shared Socioeconomic Pathways , 2016 .

[13]  Leon E. Clarke,et al.  Win–Win strategies to promote air pollutant control policies and non-fossil energy target regulation in China , 2016 .

[14]  S. Raoa,et al.  The marker quanti fi cation of the Shared Socioeconomic Pathway 2 : A middle-ofthe-road scenario for the 21 st century , 2016 .

[15]  T. Berntsen,et al.  Evaluating the climate and air quality impacts of short-lived pollutants , 2015 .

[16]  Keywan Riahi,et al.  Air-pollution emission ranges consistent with the representative concentration pathways , 2014 .

[17]  José G. Siri,et al.  Changes in European greenhouse gas and air pollutant emissions 1960–2010: decomposition of determining factors , 2014, Climatic Change.

[18]  Keywan Riahi,et al.  A new scenario framework for Climate Change Research: scenario matrix architecture , 2014, Climatic Change.

[19]  W. Hazeleger,et al.  Implications of alternative assumptions regarding future air pollution control in scenarios similar to the Representative Concentration Pathways , 2013 .

[20]  Markus Amann,et al.  Regional and Global Emissions of Air Pollutants: Recent Trends and Future Scenarios , 2013 .

[21]  Keywan Riahi,et al.  Better air for better health: Forging synergies in policies for energy access, climate change and air pollution , 2013 .

[22]  Andrew H. Mizrahi,et al.  Near-term climate mitigation by short-lived forcers , 2013, Proceedings of the National Academy of Sciences.

[23]  Nebojsa Nakicenovic,et al.  Climate policies can help resolve energy security and air pollution challenges , 2013, Climatic Change.

[24]  Alan D. Lopez,et al.  A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010 , 2012, The Lancet.

[25]  Keywan Riahi,et al.  A new scenario framework for climate change research: the concept of shared socioeconomic pathways , 2013, Climatic Change.

[26]  Keywan Riahi,et al.  Chapter 17 - Energy Pathways for Sustainable Development , 2012 .

[27]  Brian C. O'Neill,et al.  The Need for and Use of Socio-Economic Scenarios for Climate Change Analysis , 2012 .

[28]  Karl E. Taylor,et al.  An overview of CMIP5 and the experiment design , 2012 .

[29]  Kaarle Kupiainen,et al.  Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security , 2012, Science.

[30]  A. Cohen,et al.  Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution. , 2012, Environmental science & technology.

[31]  Jens Borken-Kleefeld,et al.  Cost-effective control of air quality and greenhouse gases in Europe: Modeling and policy applications , 2011, Environ. Model. Softw..

[32]  Detlef P. van Vuuren,et al.  Global projections for anthropogenic reactive nitrogen emissions to the atmosphere: An assessment of scenarios in the scientific literature , 2011 .

[33]  N. Nakicenovic,et al.  RCP 8.5—A scenario of comparatively high greenhouse gas emissions , 2011 .

[34]  Keywan Riahi,et al.  Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period , 2011 .

[35]  A. Thomson,et al.  The representative concentration pathways: an overview , 2011 .

[36]  David S. Lee,et al.  Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application , 2010 .

[37]  Zbigniew Klimont,et al.  Anthropogenic sulfur dioxide emissions: 1850–2005 , 2010 .

[38]  John F. B. Mitchell,et al.  The next generation of scenarios for climate change research and assessment , 2010, Nature.

[39]  Richard T. Carson,et al.  The Environmental Kuznets Curve: Seeking Empirical Regularity and Theoretical Structure , 2010, Review of Environmental Economics and Policy.

[40]  Kazuhiko Ito,et al.  Long-term ozone exposure and mortality. , 2009, The New England journal of medicine.

[41]  Janusz Cofala,et al.  The global impact of ozone on agricultural crop yields under current and future air quality legislation , 2009 .

[42]  V. Ramanathan,et al.  Global and regional climate changes due to black carbon , 2008 .

[43]  J. Bollen Energy security , air pollution , and climate change : an integrated cost-benefit approach , 2008 .

[44]  P. Lucas,et al.  Downscaling drivers of global environmental change Enabling use of global SRES scenarios at the national and grid levels , 2007 .

[45]  Markus Amann,et al.  Exploring the ancillary benefits of the Kyoto Protocol for air pollution in Europe , 2006 .

[46]  WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide , 2006 .

[47]  T. Wigley,et al.  Future Sulfur Dioxide Emissions , 2005 .

[48]  D. Stern Beyond the Environmental Kuznets Curve: Diffusion of Sulfur-Emissions-Abating Technology , 2005 .

[49]  Chandra Venkataraman,et al.  Global atmospheric impacts of residential fuels , 2004 .

[50]  R. Burnett,et al.  Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. , 2002, JAMA.

[51]  D. Dockery,et al.  An association between air pollution and mortality in six U.S. cities. , 1993, The New England journal of medicine.