Weighted L 2-contractivity of Langevin dynamics with singular potentials

Convergence to equilibrium of underdamped Langevin dynamics is studied under general assumptions on the potential U allowing for singularities. By modifying the direct approach to convergence in L 2 pioneered by Hérau and developed by Dolbeault et al, we show that the dynamics converges exponentially fast to equilibrium in the topologies L 2(dμ) and L 2(W* dμ), where μ denotes the invariant probability measure and W* is a suitable Lyapunov weight. In both norms, we make precise how the exponential convergence rate depends on the friction parameter γ in Langevin dynamics, by providing a lower bound scaling as min(γ, γ −1). The results hold for usual polynomial-type potentials as well as potentials with singularities such as those arising from pairwise Lennard-Jones interactions between particles.

[1]  G. Stoltz,et al.  Spectral methods for Langevin dynamics and associated error estimates , 2017, 1702.04718.

[2]  Christophe Andrieu,et al.  Hypocoercivity of piecewise deterministic Markov process-Monte Carlo , 2018, The Annals of Applied Probability.

[3]  C. Mouhot,et al.  Hypocoercivity for kinetic equations with linear relaxation terms , 2008, 0810.3493.

[4]  Jacob D. Durrant,et al.  Molecular dynamics simulations and drug discovery , 2011, BMC Biology.

[5]  Frederic Herau Short and long time behavior of the Fokker-Planck equation in a confining potential and applications , 2005 .

[6]  M. Tuckerman Statistical Mechanics: Theory and Molecular Simulation , 2010 .

[7]  Jonathan C. Mattingly,et al.  Slow energy dissipation in anharmonic oscillator chains , 2007, 0712.3884.

[8]  W. Kliemann Recurrence and invariant measures for degenerate diffusions , 1987 .

[9]  Lawrence Carin,et al.  Preconditioned Stochastic Gradient Langevin Dynamics for Deep Neural Networks , 2015, AAAI.

[10]  C. Mouhot,et al.  HYPOCOERCIVITY FOR LINEAR KINETIC EQUATIONS CONSERVING MASS , 2010, 1005.1495.

[11]  P. Cattiaux,et al.  Entropic multipliers method for Langevin diffusion and weighted log Sobolev inequalities , 2017, Journal of Functional Analysis.

[12]  Yee Whye Teh,et al.  Bayesian Learning via Stochastic Gradient Langevin Dynamics , 2011, ICML.

[13]  F. Nier,et al.  Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians , 2005 .

[14]  L. Hörmander Hypoelliptic second order differential equations , 1967 .

[15]  S. Meyn,et al.  Stability of Markovian processes III: Foster–Lyapunov criteria for continuous-time processes , 1993, Advances in Applied Probability.

[16]  Jonathan C. Mattingly,et al.  Ergodicity and Lyapunov Functions for Langevin Dynamics with Singular Potentials , 2017, Communications on Pure and Applied Mathematics.

[17]  Yu Cao,et al.  On explicit $L^2$-convergence rate estimate for underdamped Langevin dynamics , 2019, 1908.04746.

[18]  R. Bhattacharya On the functional central limit theorem and the law of the iterated logarithm for Markov processes , 1982 .

[19]  Luc Rey-Bellet,et al.  Ergodic properties of Markov processes , 2006 .

[20]  S. Armstrong,et al.  Variational methods for the kinetic Fokker-Planck equation , 2019, 1902.04037.

[21]  Diego Pallara,et al.  Spectrum of Ornstein-Uhlenbeck Operators in Lp Spaces with Respect to Invariant Measures , 2002 .

[22]  J. M. Sanz-Serna,et al.  Randomized Hamiltonian Monte Carlo , 2015, 1511.09382.

[23]  Effective diffusion in the Fokker-Planck equation , 1989 .

[24]  David P. Herzog,et al.  Gamma Calculus Beyond Villani and Explicit Convergence Estimates for Langevin Dynamics with Singular Potentials , 2019, Archive for Rational Mechanics and Analysis.

[25]  On explicit $L^2$-convergence rate estimate for piecewise deterministic Markov processes , 2020, 2007.14927.

[26]  Martin Hairer,et al.  From Ballistic to Diffusive Behavior in Periodic Potentials , 2007, 0707.2352.

[27]  J. Eckmann,et al.  Non-equilibrium steady states for networks of oscillators , 2017, 1712.09413.

[28]  Martin Grothaus,et al.  Hilbert space hypocoercivity for the Langevin dynamics revisited , 2016, 1608.07889.

[29]  Frédéric Hérau,et al.  Hypocoercivity and exponential time decay for the linear inhomogeneous relaxation Boltzmann equation , 2005, Asymptot. Anal..

[30]  J. Koelman,et al.  Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics , 1992 .

[31]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[32]  F. Hérau,et al.  Isotropic Hypoellipticity and Trend to Equilibrium for the Fokker-Planck Equation with a High-Degree Potential , 2004 .

[33]  Cl'ement Mouhot,et al.  Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus , 2006 .

[34]  Martin Grothaus,et al.  A Hypocoercivity Related Ergodicity Method for Singularly Distorted Non-Symmetric Diffusions , 2015 .

[35]  Axel Klar,et al.  Exponential Rate of Convergence to Equilibrium for a Model Describing Fiber Lay-Down Processes , 2012, 1201.2156.

[36]  Rohitash Chandra,et al.  Bayesian Neural Learning via Langevin Dynamics for Chaotic Time Series Prediction , 2017, ICONIP.

[37]  G. Stoltz,et al.  THEORETICAL AND NUMERICAL COMPARISON OF SOME SAMPLING METHODS FOR MOLECULAR DYNAMICS , 2007 .

[38]  Jonathan C. Mattingly,et al.  Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise , 2002 .

[39]  Gabriel Stoltz,et al.  A Perturbative Approach to Control Variates in Molecular Dynamics , 2017, Multiscale Model. Simul..

[40]  M. Grothaus,et al.  Construction, ergodicity and rate of convergence of N-particle Langevin dynamics with singular potentials , 2010 .

[41]  S. Olla,et al.  Convergence rates for nonequilibrium Langevin dynamics , 2017, 1702.03685.

[42]  Jonathan C. Mattingly,et al.  Yet Another Look at Harris’ Ergodic Theorem for Markov Chains , 2008, 0810.2777.

[43]  M. Hairer,et al.  Spectral Properties of Hypoelliptic Operators , 2002 .

[44]  Jonathan C. Mattingly,et al.  Geometric Ergodicity of Two--dimensional Hamiltonian systems with a Lennard--Jones--like Repulsive Potential , 2011, 1104.3842.

[45]  Jonathan C. Mattingly,et al.  Geometric ergodicity of Langevin dynamics with Coulomb interactions , 2019, Nonlinearity.

[46]  Yee Whye Teh,et al.  Consistency and Fluctuations For Stochastic Gradient Langevin Dynamics , 2014, J. Mach. Learn. Res..

[47]  M. M. Tropper Ergodic and quasideterministic properties of finite-dimensional stochastic systems , 1977 .

[48]  Liming Wu Large and moderate deviations and exponential convergence for stochastic damping Hamiltonian systems , 2001 .

[49]  D. Bakry,et al.  A simple proof of the Poincaré inequality for a large class of probability measures , 2008 .