Perspective registration and multi-frame super-resolution of license plates in surveillance videos

[1]  Lin Luo,et al.  Location and Super-Resolution Enhancement of License Plates Based on Video Sequences , 2009, 2009 First International Conference on Information Science and Engineering.

[2]  Liming Chen,et al.  Unifying Approach for Fast License Plate Localization and Super-Resolution , 2010, 2010 20th International Conference on Pattern Recognition.

[3]  Jan Kautz,et al.  Loss Functions for Image Restoration With Neural Networks , 2017, IEEE Transactions on Computational Imaging.

[4]  Ying Liu,et al.  A License Plate Super-resolution Reconstruction Algorithm Based on Manifold Learning , 2014, 2014 IEEE 17th International Conference on Computational Science and Engineering.

[5]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[6]  Klamer Schutte,et al.  Super-Resolution on Moving Objects and Background , 2006, 2006 International Conference on Image Processing.

[7]  Seoung Wug Oh,et al.  Deep Video Super-Resolution Network Using Dynamic Upsampling Filters Without Explicit Motion Compensation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[8]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[9]  Yang Yang,et al.  License Plate Image Super-Resolution Based on Convolutional Neural Network , 2018, 2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC).

[10]  Shaharyar Ahmed Khan Tareen,et al.  A comparative analysis of SIFT, SURF, KAZE, AKAZE, ORB, and BRISK , 2018, 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET).

[11]  P. Moral Nonlinear filtering : Interacting particle resolution , 1997 .

[12]  Hélio Pedrini,et al.  A learning-based single-image super-resolution method for very low quality license plate images , 2016, 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

[13]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[14]  Michal Irani,et al.  Improving resolution by image registration , 1991, CVGIP Graph. Model. Image Process..

[15]  Ravi Subban,et al.  Compressive object tracking — A review and analysis , 2014 .

[16]  Larry D. Hostetler,et al.  The estimation of the gradient of a density function, with applications in pattern recognition , 1975, IEEE Trans. Inf. Theory.

[17]  Klamer Schutte,et al.  Super-Resolution on small moving objects , 2008, 2008 15th IEEE International Conference on Image Processing.

[18]  Giovanni Ramponi,et al.  A Robust Tracking Algorithm for Super-Resolution Reconstruction of Vehicle License Plates , 2014, ApplePies.

[19]  Christian Ledig,et al.  Real-Time Video Super-Resolution with Spatio-Temporal Networks and Motion Compensation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Frédéric Champagnat,et al.  Fast super-resolution on moving objects in video sequences , 2008, 2008 16th European Signal Processing Conference.

[21]  Meng Zhang,et al.  Selection-Based Subpixel-Shifted Images Super-Resolution , 2019, IEEE Access.

[22]  Qigang Gao,et al.  Real-time license plate identification by perceptual shape grouping and tracking , 2006, 2006 IEEE Intelligent Transportation Systems Conference.

[23]  A. J. Shah,et al.  Image super resolution-A survey , 2012, 2012 1st International Conference on Emerging Technology Trends in Electronics, Communication & Networking.

[24]  Minghui Zhang,et al.  Joint License Plate Super-Resolution and Recognition in One Multi-Task Gan Framework , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[25]  Christopher Hunt,et al.  Notes on the OpenSURF Library , 2009 .

[26]  Gary Bradski,et al.  Computer Vision Face Tracking For Use in a Perceptual User Interface , 1998 .

[27]  Simon Baker,et al.  Lucas-Kanade 20 Years On: A Unifying Framework , 2004, International Journal of Computer Vision.

[28]  Saeid Nahavandi,et al.  Performance Evaluation of Multi-Frame Super-Resolution Algorithms , 2012, 2012 International Conference on Digital Image Computing Techniques and Applications (DICTA).

[29]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[30]  Kalyan Kumar Hati,et al.  Review and improvement areas of mean shift tracking algorithm , 2014, The 18th IEEE International Symposium on Consumer Electronics (ISCE 2014).

[31]  Moon Gi Kang,et al.  Super-resolution image reconstruction: a technical overview , 2003, IEEE Signal Process. Mag..

[32]  William T. Freeman,et al.  Learning Low-Level Vision , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[33]  Juhyun Lee,et al.  Accurate License Plate Recognition and Super-Resolution Using a Generative Adversarial Networks on Traffic Surveillance Video , 2018, 2018 IEEE International Conference on Consumer Electronics - Asia (ICCE-Asia).

[34]  Yu-Wing Tai,et al.  Lucas-Kanade image registration using camera parameters , 2011, Electronic Imaging.

[35]  Mahmood Fathy,et al.  Precise Image Registration with Structural Similarity Error Measurement Applied to Superresolution , 2009, EURASIP J. Adv. Signal Process..

[36]  Jean-Michel Morel,et al.  An Analysis of the Factors Affecting Keypoint Stability in Scale-Space , 2016, Journal of Mathematical Imaging and Vision.

[37]  Hubert Konik,et al.  CAMSHIFT improvement on multi-hue and multi-object tracking , 2011, Proceedings of the 2011 International Conference on Electrical Engineering and Informatics.

[38]  Subramaniam Ganesan,et al.  An efficient implementation of the Hough transform for detecting vehicle license plates using DSP'S , 1995, Proceedings Real-Time Technology and Applications Symposium.

[39]  Gary R. Bradski,et al.  ORB: An efficient alternative to SIFT or SURF , 2011, 2011 International Conference on Computer Vision.

[40]  Zhou Wang,et al.  Complex Wavelet Structural Similarity: A New Image Similarity Index , 2009, IEEE Transactions on Image Processing.

[41]  Bhaskar Choubey,et al.  Vehicle speed estimation from tracking license plates , 2015, 2015 23rd Telecommunications Forum Telfor (TELFOR).

[42]  Luc Van Gool,et al.  NTIRE 2018 Challenge on Single Image Super-Resolution: Methods and Results , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[43]  Siome Goldenstein,et al.  Eyes on the Target: Super-Resolution and License-Plate Recognition in Low-Quality Surveillance Videos , 2017, IEEE Access.

[44]  Sunil Karamchandani,et al.  Review of Mean Shift Algorithm and its Improvements , 2015 .

[45]  Kenneth Tze Kin Teo,et al.  Multiple Vehicles License Plate Tracking and Recognition via Isotropic Dilation , 2011, 2011 Third International Conference on Computational Intelligence, Communication Systems and Networks.

[46]  Kai-Kuang Ma,et al.  A survey on super-resolution imaging , 2011, Signal Image Video Process..

[47]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[48]  Michael Elad,et al.  Fast and robust multiframe super resolution , 2004, IEEE Transactions on Image Processing.

[49]  Bernhard Schölkopf,et al.  EnhanceNet: Single Image Super-Resolution Through Automated Texture Synthesis , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[50]  Marc Levoy,et al.  Handheld multi-frame super-resolution , 2019, ACM Trans. Graph..

[51]  Thomas S. Huang,et al.  Multiframe image restoration and registration , 1984 .

[52]  Aggelos K. Katsaggelos,et al.  Video Super-Resolution With Convolutional Neural Networks , 2016, IEEE Transactions on Computational Imaging.

[53]  A. N. Rajagopalan,et al.  Superresolution of License Plates in Real Traffic Videos , 2007, IEEE Transactions on Intelligent Transportation Systems.

[54]  Akram M. Zeki,et al.  Regularization-based multi-frame super-resolution: A systematic review , 2020, J. King Saud Univ. Comput. Inf. Sci..

[55]  Christian Riess,et al.  Toward Bridging the Simulated-to-Real Gap: Benchmarking Super-Resolution on Real Data , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[56]  Wan-Chi Siu,et al.  Review of image interpolation and super-resolution , 2012, Proceedings of The 2012 Asia Pacific Signal and Information Processing Association Annual Summit and Conference.

[57]  Soheil Darabi,et al.  Compressive image super-resolution , 2009, 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers.

[58]  Jie Li,et al.  Image super-resolution: The techniques, applications, and future , 2016, Signal Process..

[59]  G. Ramponi,et al.  Minimum-Error Splitting Algorithm for a Dual Layer LCD Display—Part II: Implementation and Results , 2008, Journal of Display Technology.

[60]  Giovanni Ramponi,et al.  High Dynamic Range Image Display With Halo and Clipping Prevention , 2011, IEEE Transactions on Image Processing.

[61]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..