Clustering using principal component analysis applied to autonomy-disability of elderly people
暂无分享,去创建一个
[1] Yating Hu,et al. Unsupervised Possibilistic Clustering Based on Kernel Methods , 2012 .
[2] Teuvo Kohonen,et al. Self-Organizing Maps , 2010 .
[3] J. Dartigues,et al. A 15-year population-based cohort study of the incidence of Parkinson's disease and dementia with Lewy bodies in an elderly French cohort , 2009, Journal of Neurology, Neurosurgery & Psychiatry.
[4] William A. Schmitt,et al. Interactive exploration of microarray gene expression patterns in a reduced dimensional space. , 2002, Genome research.
[5] Teuvo Kohonen,et al. The self-organizing map , 1990 .
[6] B. Laurent,et al. Cognitive complaints, neuropsychological performance and affective disorders in elderly community residents , 2008, Disability and rehabilitation.
[7] R. Tryon. Cluster Analysis , 1939 .
[8] James C. Bezdek,et al. Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.
[9] Chris H. Q. Ding,et al. K-means clustering via principal component analysis , 2004, ICML.
[10] Catherine Combes,et al. Couplage modèle de Markov – modèle d'optimisation : une application dans le domaine médico-social , 2008 .
[11] Xing-Ming Zhao,et al. A Novel Clustering Analysis Based on PCA and SOMs for Gene Expression Patterns , 2004, ISNN.
[12] R. J. Kuo,et al. Application of a hybrid of genetic algorithm and particle swarm optimization algorithm for order clustering , 2010, Decis. Support Syst..
[13] Jean-François Dartigues,et al. Natural History of Decline in Instrumental Activities of Daily Living Performance over the 10 Years Preceding the Clinical Diagnosis of Dementia: A Prospective Population‐Based Study , 2008, Journal of the American Geriatrics Society.
[14] G. Lafortune,et al. Trends in Severe Disability Among Elderly People: Assessing the Evidence in 12 OECD Countries and the Future Implications , 2007 .
[15] Miin-Shen Yang,et al. Alternative c-means clustering algorithms , 2002, Pattern Recognit..
[16] James M. Keller,et al. A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..
[17] J. Suykens,et al. Image Segmentation using a Weighted Kernel PCA Approach to Spectral Clustering , 2007, 2007 IEEE Symposium on Computational Intelligence in Image and Signal Processing.
[18] Fiorenzo Franceschini,et al. Ordered Samples Control Charts for Ordinal Variables , 2005 .
[19] Anil K. Jain,et al. Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..
[20] Michael R. Anderberg,et al. Cluster Analysis for Applications , 1973 .
[21] John A. Hartigan,et al. Clustering Algorithms , 1975 .
[22] Thomas S. Huang,et al. Facial expression recognition: A clustering-based approach , 2003, Pattern Recognit. Lett..
[23] Ernst Wit,et al. Identifying Variables Responsible for Clustering in Discriminant Analysis of Data from Infrared Microspectroscopy of a Biological Sample , 2007, J. Comput. Biol..
[24] Miin-Shen Yang. A survey of fuzzy clustering , 1993 .
[25] Anil K. Jain,et al. Algorithms for Clustering Data , 1988 .
[26] J. MacQueen. Some methods for classification and analysis of multivariate observations , 1967 .
[27] Katherine A. Heller,et al. Bayesian hierarchical clustering , 2005, ICML.
[28] Richard O. Duda,et al. Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.
[29] Jean-François Dartigues. Paquid: an integrated, multidisciplinary, population-based approach to normal and pathological cerebral aging , 2006 .
[30] I. Jolliffe. Principal Component Analysis , 2002 .