Dynamic estimation of homography transformations on the special linear group for visual servo control

In the last decade, many vision-based robot controllers have been designed using Cartesian information encoded in the homography transformation that links two images of a planar object. For any approach, the performance of the closed-loop system depends on the quality of the homography estimates obtained. In this paper, we exploit the special linear Lie-group structure of the set of all homographies to develop a dynamic observer to estimate homographies online. The resulting estimates are effective and can be used to improve closed-loop response of several visual servoing algorithms.

[1]  Robert M. Sanner,et al.  A coupled nonlinear spacecraft attitude controller and observer with an unknown constant gyro bias and gyro noise , 2003, IEEE Trans. Autom. Control..

[2]  François Chaumette,et al.  Theoretical improvements in the stability analysis of a new class of model-free visual servoing methods , 2002, IEEE Trans. Robotics Autom..

[3]  E. Malis,et al.  2 1/2 D Visual Servoing , 1999 .

[4]  橋本 浩一 Visual servoing : real-time control of robot manipulators based on visual sensory feedback , 1993 .

[5]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[6]  Philippe Martin,et al.  An Invariant Observer for Earth-Velocity-Aided Attitude Heading Reference Systems , 2008 .

[7]  Philippe Martin,et al.  Invariant observers for attitude and heading estimation from low-cost inertial and magnetic sensors , 2007, 2007 46th IEEE Conference on Decision and Control.

[8]  Philippe Martin,et al.  Non-linear observer on Lie Groups for left-invariant dynamics with right-left equivariant output , 2008 .

[9]  Patrick Rives,et al.  Vision-based Control for Car Platooning using Homography Decomposition , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[10]  François Chaumette,et al.  Visual servo control. II. Advanced approaches [Tutorial] , 2007, IEEE Robotics & Automation Magazine.

[11]  E. Malis,et al.  Deeper understanding of the homography decomposition for vision-based control , 2007 .

[12]  Claude Samson,et al.  Robot Control: The Task Function Approach , 1991 .

[13]  Koichiro Deguchi,et al.  Optimal Motion Control for Image-Based Visual Servoing by Decoupling Translation and Rotation , 1999 .

[14]  S. Hutchinson,et al.  Visual Servo Control Part II : Advanced Approaches , 2007 .

[15]  Warren E. Dixon,et al.  Homography-based visual servo regulation of mobile robots , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[16]  Robert E. Mahony,et al.  Nonlinear Complementary Filters on the Special Orthogonal Group , 2008, IEEE Transactions on Automatic Control.

[17]  Robert E. Mahony,et al.  Attitude estimation on SO[3] based on direct inertial measurements , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[18]  Selim Benhimane,et al.  Homography-based 2D Visual Tracking and Servoing , 2007, Int. J. Robotics Res..

[19]  Olivier Faugeras,et al.  Motion and Structure from Motion in a piecewise Planar Environment , 1988, Int. J. Pattern Recognit. Artif. Intell..

[20]  Robert E. Mahony,et al.  Gradient-Like Observers for Invariant Dynamics on a Lie Group , 2008, IEEE Transactions on Automatic Control.

[21]  M.S. de Queiroz,et al.  Homography-based visual servoing of wheeled mobile robots , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[22]  Christian Lageman,et al.  State observers for invariant dynamics on a Lie group , 2008 .

[23]  William J. Wilson,et al.  Relative end-effector control using Cartesian position based visual servoing , 1996, IEEE Trans. Robotics Autom..

[24]  Philippe Martin,et al.  Symmetry-Preserving Observers , 2006, IEEE Transactions on Automatic Control.