Towards Practical Non-interactive Public Key Cryptosystems Using Non-maximal Imaginary Quadratic Orders

We present a new non-interactive public key distribution system based on the class group of a non-maximal imaginary quadratic order Cl(Δp). The main advantage of our system over earlier proposals based on (ℤ/nℤ). [19],[21] is that embedding id information into group elements in a cyclic subgroup of the class group is easy (straight-forward embedding into prime ideals suffices) and secure, since the entire class group is cyclic with very high probability. In order to compute discrete logarithms in the class group, the KGC needs to know the prime factorization of Δp = Δ1p2. We present an algorithm for computing discrete logarithms in Cl(Δp) by reducing the problem to computing discrete logarithms in Cl(Δ1) and either Fp or Fp2. We prove that a similar reduction works for arbitrary non-maximal orders, and that it has polynomial complexity if the factorization of the conductor is known.

[1]  P. Engel,et al.  Voronoï's impact on modern science , 1998 .

[2]  A. Shamm Identity-based cryptosystems and signature schemes , 1985 .

[3]  Ueli Maurer,et al.  A Remark on a Non-interactive Public-Key Distribution System , 1992, EUROCRYPT.

[4]  Henri Cohen,et al.  Computing ray class groups, conductors and discriminants , 1996, Math. Comput..

[5]  Michael J. Jacobson,et al.  The Size of the Fundamental Solutions of Consecutive Pell Equations , 2000, Exp. Math..

[6]  Ronald L. Rivest,et al.  The MD5 Message-Digest Algorithm , 1992, RFC.

[7]  Kaisa Nyberg,et al.  Advances in Cryptology — EUROCRYPT'98 , 1998 .

[8]  Arjen K. Lenstra,et al.  Selecting Cryptographic Key Sizes , 2000, Journal of Cryptology.

[9]  Adi Shamir,et al.  Identity-Based Cryptosystems and Signature Schemes , 1984, CRYPTO.

[10]  Ueli Maurer Kryptographie: Basistechnologie der Informationsgesellschaft (Zusammenfassung) , 1999, GI Jahrestagung.

[11]  Michael Wiener,et al.  Advances in Cryptology — CRYPTO’ 99 , 1999 .

[12]  Michael J. Jacobson,et al.  Subexponential class group computation in quadratic orders , 1999 .

[13]  Detlef Hühnlein,et al.  Quadratic orders for {NESSIE} - Overview and parameter sizes of three public key families , 2000 .

[14]  Detlef Hühnlein,et al.  Efficient Implementation of Cryptosystems Based on Non-maximal Imaginary Quadratic Orders , 1999, Selected Areas in Cryptography.

[15]  Henri Cohen,et al.  A course in computational algebraic number theory , 1993, Graduate texts in mathematics.

[16]  Ueli Maurer,et al.  A Non-interactive Public-Key Distribution System , 1996, Des. Codes Cryptogr..

[17]  Tsuyoshi Takagi,et al.  Reducing Logarithms in Totally Non-maximal Imaginary Quadratic Orders to Logarithms in Finite Fields , 1999, ASIACRYPT.

[18]  Tsuyoshi Takagi,et al.  A Cryptosystem Based on Non-maximal Imaginary Quadratic Orders with Fast Decryption , 1998, EUROCRYPT.

[19]  Henri Cohen,et al.  Heuristics on class groups of number fields , 1984 .

[20]  Walter M. Lioen,et al.  Factorization of RSA-140 Using the Number Field Sieve , 1999, CRYPTO 1999.

[21]  Helmut Hasse,et al.  Number Theory , 2020, An Introduction to Probabilistic Number Theory.

[22]  Markus Maurer,et al.  A Note On The Weakness Of The Maurer-Yacobi Squaring Method , 1999 .

[23]  Donald W. Davies,et al.  Advances in Cryptology — EUROCRYPT ’91 , 2001, Lecture Notes in Computer Science.

[24]  L. J. Mordell Review: Z. I. Borevich and I. R. Shafarevich, Number theory , 1965 .

[25]  Jack Dongarra,et al.  PVM: Parallel virtual machine: a users' guide and tutorial for networked parallel computing , 1995 .

[26]  Ueli Maurer,et al.  Non-interactive Public-Key Cryptography , 1991, EUROCRYPT.

[27]  Rainer A. Rueppel Advances in Cryptology — EUROCRYPT’ 92 , 2001, Lecture Notes in Computer Science.

[28]  Hugo Krawczyk,et al.  Advances in Cryptology - CRYPTO '98 , 1998 .

[29]  Oliver Schirokauer,et al.  Using number fields to compute logarithms in finite fields , 2000, Math. Comput..

[30]  Chae Hoon Lim,et al.  Modified Maurer-Yacobi's scheme and its applications , 1992, AUSCRYPT.

[31]  J. Neukirch Algebraic Number Theory , 1999 .

[32]  Damian Weber,et al.  The Solution of McCurley's Discrete Log Challenge , 1998, CRYPTO.

[33]  Detlef Hühnlein,et al.  An Efficient NICE-Schnorr-Type Signature Scheme , 2000, Public Key Cryptography.

[34]  Detlef Hühnlein,et al.  Faster Generation of NICE-Schnorr-Type Signatures , 2001, CT-RSA.