On Permutation Quadrinomials and 4-Uniform BCT

We study a class of general quadrinomials over the field of size $2^{2m}$ with odd $m$ and characterize conditions under which they are permutations with the best boomerang uniformity, a new and important parameter related to boomerang-style attacks. This vastly extends previous results from several recent papers.

[1]  Kaisa Nyberg,et al.  Differentially Uniform Mappings for Cryptography , 1994, EUROCRYPT.

[2]  Yin Tan,et al.  New Families of Differentially 4-Uniform Permutations over ${\mathbb F}_{2^{2k}}$ , 2012, SETA.

[3]  Kangquan Li,et al.  New Results About the Boomerang Uniformity of Permutation Polynomials , 2019, IEEE Transactions on Information Theory.

[4]  Bruce Schneier,et al.  Amplified Boomerang Attacks Against Reduced-Round MARS and Serpent , 2000, FSE.

[5]  Eli Biham,et al.  Differential cryptanalysis of DES-like cryptosystems , 1990, Journal of Cryptology.

[6]  Anne Canteaut,et al.  On the Boomerang Uniformity of Cryptographic Sboxes , 2018, IACR Trans. Symmetric Cryptol..

[7]  Hao Chen,et al.  On a conjecture about a class of permutation quadrinomials , 2019, Finite Fields Their Appl..

[8]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[9]  Xiangyong Zeng,et al.  A revisit to a class of permutation quadrinomials , 2019, Finite Fields Their Appl..

[10]  Alex Biryukov,et al.  Related-Key Cryptanalysis of the Full AES-192 and AES-256 , 2009, ASIACRYPT.

[11]  Xiangyong Zeng,et al.  A Class of Quadrinomial Permutations With Boomerang Uniformity Four , 2020, IEEE Transactions on Information Theory.

[12]  Jie Peng,et al.  New differentially 4-uniform permutations by modifying the inverse function on subfields , 2017, Cryptography and Communications.

[13]  David A. Wagner,et al.  The Boomerang Attack , 1999, FSE.

[14]  Yongqiang Li,et al.  On the Generalization of Butterfly Structure , 2018, IACR Trans. Symmetric Cryptol..

[15]  Tor Helleseth,et al.  Cryptographically strong permutations from the butterfly structure , 2019, Designs, Codes and Cryptography.

[16]  Yin Tan,et al.  New Families of Differentially 4-Uniform Permutations Over F 2 2 k , 2012 .

[17]  Yin Tan,et al.  More Constructions of Differentially 4-uniform Permutations on $\gf_{2^{2k}}$ , 2013, ArXiv.

[18]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[19]  Carl Bracken,et al.  A highly nonlinear differentially 4 uniform power mapping that permutes fields of even degree , 2009, Finite Fields Their Appl..

[20]  Rudolf Lide,et al.  Finite fields , 1983 .

[21]  Sihem Mesnager,et al.  On the boomerang uniformity of quadratic permutations , 2020, Designs, Codes and Cryptography.

[22]  Mitsuru Matsui,et al.  Linear Cryptanalysis Method for DES Cipher , 1994, EUROCRYPT.

[23]  Lei Hu,et al.  Boomerang Connectivity Table Revisited , 2019, IACR Cryptol. ePrint Arch..

[24]  Robert Gold,et al.  Maximal recursive sequences with 3-valued recursive cross-correlation functions (Corresp.) , 1968, IEEE Trans. Inf. Theory.

[25]  Tao Huang,et al.  Boomerang Connectivity Table: A New Cryptanalysis Tool , 2018, IACR Cryptol. ePrint Arch..

[26]  Tadao Kasami,et al.  The Weight Enumerators for Several Clauses of Subcodes of the 2nd Order Binary Reed-Muller Codes , 1971, Inf. Control..

[27]  Jie Peng,et al.  New links between nonlinearity and differential uniformity , 2018, Finite Fields Their Appl..

[28]  Yin Tan,et al.  Binomial differentially 4 uniform permutations with high nonlinearity , 2012, Finite Fields Their Appl..

[29]  Lei Hu,et al.  Boomerang Connectivity Table Revisited. Application to SKINNY and AES , 2019, IACR Trans. Symmetric Cryptol..

[30]  Shihui Fu,et al.  Differentially 4-Uniform Permutations with the Best Known Nonlinearity from Butterflies , 2017, IACR Trans. Symmetric Cryptol..

[31]  Tor Helleseth,et al.  New permutation quadrinomials over F22m , 2018, Finite Fields Their Appl..

[32]  Alex Biryukov,et al.  Cryptanalysis of a Theorem: Decomposing the Only Known Solution to the Big APN Problem , 2016, CRYPTO.

[33]  Alex Biryukov,et al.  Cryptanalysis of SAFER++ , 2003, CRYPTO.

[34]  Sihem Mesnager,et al.  Solutions of $x^{q^k}+\cdots+x^{q}+x=a$ in $GF{2^n}$ , 2019, 1905.10579.

[35]  James Stuart Tanton,et al.  Encyclopedia of Mathematics , 2005 .

[36]  Eli Biham,et al.  New Results on Boomerang and Rectangle Attacks , 2002, FSE.

[37]  Xiaohu Tang,et al.  Differentially 4-uniform bijections by permuting the inverse function , 2015, Des. Codes Cryptogr..

[38]  Eli Biham,et al.  The Rectangle Attack - Rectangling the Serpent , 2001, EUROCRYPT.

[39]  Xuejia Lai Higher Order Derivatives and Differential Cryptanalysis , 1994 .

[40]  Matthew J. B. Robshaw,et al.  The Block Cipher Companion , 2011, Information Security and Cryptography.

[41]  Jongsung Kim,et al.  Related-Key Boomerang and Rectangle Attacks: Theory and Experimental Analysis , 2012, IEEE Transactions on Information Theory.

[42]  Adi Shamir,et al.  A Practical-Time Related-Key Attack on the KASUMI Cryptosystem Used in GSM and 3G Telephony , 2010, Journal of Cryptology.

[43]  Yin Tan,et al.  More constructions of differentially 4-uniform permutations on F22k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\m , 2013, Designs, Codes and Cryptography.

[44]  Xiangyong Zeng,et al.  4-uniform BCT permutations from generalized butterfly structure , 2020, ArXiv.