A numerical approach for solving an inverse parabolic problem with unknown control function

In this paper, we will first study the existence and uniqueness of the solution for a one dimensional inverse heat conduction problem IHCP via an auxiliary problem. Then the present work is motivated by desire to obtain numerical approach for solving this IHCP. Our method begins with the utilisation of some transformations. These transformations allow us to eliminate an unknown term from parabolic equation to obtain an inverse parabolic problem with two unknown boundary conditions. To solve this inverse problem, we use the fundamental solution method. The effectiveness of the algorithm is illustrated by numerical example.

[1]  J. V. Beck,et al.  Combined function specification-regularization procedure for solution of inverse heat conduction problem , 1984 .

[2]  P. Hansen Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .

[3]  R. Pourgholi,et al.  A Numerical Method for Solving of a Nonlinear Inverse Diffusion Problem , 2006, Comput. Math. Appl..

[4]  Felix E. Browder,et al.  The One-Dimensional Heat Equation: Preface , 1984 .

[5]  R. Pourgholi,et al.  A Numerical Algorithm for Solving a One-Dimensional Inverse Heat Conduction Problem , 2008 .

[6]  Yanping Lin,et al.  Analytical and numerical solutions for a class of nonlocal nonlinear parabolic differential equations , 1994 .

[7]  B. Blackwell,et al.  Comparison of some inverse heat conduction methods using experimental data , 1996 .

[8]  Juan Andrés Martín García,et al.  A sequential algorithm of inverse heat conduction problems using singular value decomposition , 2005 .

[9]  R. Pourgholi,et al.  A numerical technique for solving IHCPs using Tikhonov regularization method , 2010 .

[10]  James V. Beck,et al.  Inverse Heat Conduction , 2023 .

[11]  Yanping Lin,et al.  A finite-difference solution to an inverse problem for determining a control function in a parabolic partial differential equation , 1989 .

[12]  J. R. Cannon,et al.  Parameter determination in parabolic partial differential equations from overspecified boundary data , 1982 .

[13]  R. Pourgholi,et al.  Application of finite difference method to analysis an ill-posed problem , 2005, Appl. Math. Comput..

[14]  R. Pourgholi,et al.  Numerical approximation of solution of an inverse heat conduction problem based on Legendre polynomials , 2006, Appl. Math. Comput..

[15]  M. N. Özişik Boundary value problems of heat conduction , 1989 .

[16]  Liang Yan,et al.  A meshless method for solving an inverse spacewise-dependent heat source problem , 2009, J. Comput. Phys..

[17]  Y. Hon,et al.  A fundamental solution method for inverse heat conduction problem , 2004 .

[18]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[19]  R. Pourgholi,et al.  A numerical method for solving a nonlinear inverse parabolic problem , 2010 .

[20]  Artur Maciag,et al.  Stability of solutions of the overdetermined inverse heat conduction problems when discretized with respect to time , 2000 .

[21]  Fikret A. Aliev,et al.  Removal of numerical instability in the solution of an inverse heat conduction problem , 2009 .

[22]  Dianne P. O'Leary,et al.  The Use of the L-Curve in the Regularization of Discrete Ill-Posed Problems , 1993, SIAM J. Sci. Comput..

[23]  Ching-Shyang Chen,et al.  The Method Of Fundamental Solutions For Solving Poisson Problems , 2002 .

[24]  Paul DuChateau,et al.  Determination of unknown physical properties in heat conduction problems , 1973 .

[25]  Yanping Lin,et al.  Determination of parameter p(t) in Holder classes for some semilinear parabolic equations , 1988 .