The ferritin superfamily: Supramolecular templates for materials synthesis.

Members of the ferritin superfamily are multi-subunit cage-like proteins with a hollow interior cavity. These proteins possess three distinct surfaces, i.e. interior and exterior surfaces of the cages and interface between subunits. The interior cavity provides a unique reaction environment in which the interior reaction is separated from the external environment. In biology the cavity is utilized for sequestration of irons and biomineralization as a mechanism to render Fe inert and sequester it from the external environment. Material scientists have been inspired by this system and exploited a range of ferritin superfamily proteins as supramolecular templates to encapsulate nanoparticles and/or as well-defined building blocks for fabrication of higher order assembly. Besides the interior cavity, the exterior surface of the protein cages can be modified without altering the interior characteristics. This allows us to deliver the protein cages to a targeted tissue in vivo or to achieve controlled assembly on a solid substrate to fabricate higher order structures. Furthermore, the interface between subunits is utilized for manipulating chimeric self-assembly of the protein cages and in the generation of symmetry-broken Janus particles. Utilizing these ideas, the ferritin superfamily has been exploited for development of a broad range of materials with applications from biomedicine to electronics.

[1]  I. Yamashita,et al.  Realizing a two-dimensional ordered array of ferritin molecules directly on a solid surface utilizing carbonaceous material affinity peptides. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[2]  Stephen Mann,et al.  Controlled synthesis of inorganic materials using supramolecular assemblies , 1991 .

[3]  M. Schoonen,et al.  The Structure of Ferrihydrite, a Nanocrystalline Material , 2007, Science.

[4]  M. Young,et al.  Biomimetic synthesis of photoactive α-Fe2O3 templated by the hyperthermophilic ferritin from Pyrococus furiosus , 2010 .

[5]  Trevor Douglas,et al.  Viruses: Making Friends with Old Foes , 2006, Science.

[6]  M. Young,et al.  Photochemical mineralization of europium, titanium, and iron oxyhydroxide nanoparticles in the ferritin protein cage. , 2008, Inorganic chemistry.

[7]  Sung-Hou Kim,et al.  Crystal structure of a small heat-shock protein , 1998, Nature.

[8]  A helix swapping study of two protein cages. , 2009, Biochemistry.

[9]  I. Yamashita,et al.  Size-controlled one-pot synthesis of fluorescent cadmium sulfide semiconductor nanoparticles in an apoferritin cavity , 2008, Nanotechnology.

[10]  G. Erker,et al.  Control of the coordination structure of organometallic palladium complexes in an apo-ferritin cage. , 2008, Journal of the American Chemical Society.

[11]  R. K. Watt,et al.  Nanophase iron phosphate, iron arsenate, iron vanadate, and iron molybdate minerals synthesized within the protein cage of ferritin. , 2005, Inorganic chemistry.

[12]  M. Young,et al.  Controlled ligand display on a symmetrical protein-cage architecture through mixed assembly. , 2006, Small.

[13]  T. Fuyuki,et al.  Effects of Dot Density and Dot Size on Charge Injection Characteristics in Nanodot Array Produced by Protein Supramolecules , 2007 .

[14]  M. Young,et al.  Monitoring biomimetic platinum nanocluster formation using mass spectrometry and cluster-dependent H2 production. , 2008, Angewandte Chemie.

[15]  G. Bullerjahn,et al.  The DpsA Protein of Synechococcus sp. Strain PCC7942 Is a DNA-binding Hemoprotein , 1995, The Journal of Biological Chemistry.

[16]  D. Rice,et al.  Comparison of the three-dimensional structures of recombinant human H and horse L ferritins at high resolution. , 1997, Journal of molecular biology.

[17]  U. Schwertmann,et al.  Iron Oxides , 2003, SSSA Book Series.

[18]  M. Young,et al.  2-D array formation of genetically engineered viral cages on au surfaces and imaging by atomic force microscopy. , 2003, Journal of the American Chemical Society.

[19]  Koichi Tanaka,et al.  Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry , 1988 .

[20]  D. Tsernoglou,et al.  The dodecameric ferritin from Listeria innocua contains a novel intersubunit iron-binding site , 2000, Nature Structural Biology.

[21]  Ki Tae Nam,et al.  Solvent-assisted patterning of polyelectrolyte multilayers and selective deposition of virus assemblies. , 2008, Nano letters.

[22]  Ki Tae Nam,et al.  Stamped microbattery electrodes based on self-assembled M13 viruses , 2008, Proceedings of the National Academy of Sciences.

[23]  R. Muller,et al.  Relaxivities of human liver and spleen ferritin. , 2005, Magnetic resonance imaging.

[24]  T. Douglas,et al.  Nanophase cobalt oxyhydroxide mineral synthesized within the protein cage of ferritin. , 2000, Inorganic chemistry.

[25]  M. Finn,et al.  Cowpea mosaic virus capsid: a promising carrier for the development of carbohydrate based antitumor vaccines. , 2008, Chemistry.

[26]  Y. Chiang,et al.  Virus-Enabled Synthesis and Assembly of Nanowires for Lithium Ion Battery Electrodes , 2006, Science.

[27]  E. Ahrens,et al.  A new transgene reporter for in vivo magnetic resonance imaging , 2005, Nature Medicine.

[28]  A. Grove,et al.  Differential DNA binding and protection by dimeric and dodecameric forms of the ferritin homolog Dps from Deinococcus radiodurans. , 2005, Journal of molecular biology.

[29]  M. Yeager,et al.  An archaeal antioxidant: characterization of a Dps-like protein from Sulfolobus solfataricus. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[30]  M. Young,et al.  Expanding the Temperature Range of Biomimetic Synthesis Using a Ferritin from the Hyperthermophile Pyrococcus furiosus , 2008 .

[31]  I. Yamashita,et al.  Electrostatic placement of single ferritin molecules , 2006 .

[32]  I. Yamashita,et al.  Improvement of Co3O4 Nanoparticle Synthesis in Apoferritin Cavity by Outer Surface PEGylation , 2008 .

[33]  Trevor Douglas,et al.  A streptavidin-protein cage Janus particle for polarized targeting and modular functionalization. , 2009, Journal of the American Chemical Society.

[34]  T. Akita,et al.  Preparation and catalytic reaction of Au/Pd bimetallic nanoparticles in apo-ferritin. , 2009, Chemical communications.

[35]  I. Yamashita Biosupramolecules for nano-devices: biomineralization of nanoparticles and their applications , 2008 .

[36]  P. Arosio,et al.  Evidence that the specificity of iron incorporation into homopolymers of human ferritin L- and H-chains is conferred by the nucleation and ferroxidase centres. , 1996, The Biochemical journal.

[37]  T. Fuyuki,et al.  Floating Gate Metal–Oxide–Semiconductor Capacitor Employing Array of High-Density Nanodots Produced by Protein Supramolecule , 2006 .

[38]  N. Steinmetz,et al.  Assembly of multilayer arrays of viral nanoparticles via biospecific recognition: a quartz crystal microbalance with dissipation monitoring study. , 2008, Biomacromolecules.

[39]  H. Kagawa,et al.  Two-dimensional crystals of reconstituted beta-subunits of the chaperonin TF55 from Sulfolobus shibatae. , 1998, Biochimica et biophysica acta.

[40]  E. Chiancone,et al.  The Dps Protein of Agrobacterium tumefaciens Does Not Bind to DNA but Protects It toward Oxidative Cleavage , 2003, Journal of Biological Chemistry.

[41]  Angela M Belcher,et al.  Programmable assembly of nanoarchitectures using genetically engineered viruses. , 2005, Nano letters.

[42]  S. Aust,et al.  The effect of putative nucleation sites on the loading and stability of iron in ferritin. , 1998, Archives of biochemistry and biophysics.

[43]  J. Paulson,et al.  On-virus construction of polyvalent glycan ligands for cell-surface receptors. , 2008, Journal of the American Chemical Society.

[44]  Trevor Douglas,et al.  Melanoma and lymphocyte cell-specific targeting incorporated into a heat shock protein cage architecture. , 2006, Chemistry & biology.

[45]  R. Naik,et al.  Engineered protein cages for nanomaterial synthesis. , 2004, Journal of the American Chemical Society.

[46]  Xiaoran Fu Stowell,et al.  Design of functional ferritin-like proteins with hydrophobic cavities. , 2006, Journal of the American Chemical Society.

[47]  Andries Zijlstra,et al.  Viral nanoparticles as tools for intravital vascular imaging , 2006, Nature Medicine.

[48]  K. Yoshizawa,et al.  Fabrication of ZnSe nanoparticles in the apoferritin cavity by designing a slow chemical reaction system. , 2005, Inorganic chemistry.

[49]  M. Young,et al.  Synthetic control over magnetic moment and exchange bias in all-oxide materials encapsulated within a spherical protein cage. , 2007, Journal of the American Chemical Society.

[50]  F. Crick,et al.  Structure of Small Viruses , 1956, Nature.

[51]  M. Finn,et al.  Chemical modification of viruses and virus-like particles. , 2009, Current topics in microbiology and immunology.

[52]  Leonid Ionov,et al.  Stimuli-Responsive Bicomponent Polymer Janus Particles by Grafting from / Grafting to Approaches , 2008 .

[53]  M. Young,et al.  Photocatalytic synthesis of copper colloids from CuII by the ferrihydrite core of ferritin. , 2004, Inorganic chemistry.

[54]  M. Graetzel,et al.  Artificial photosynthesis: water cleavage into hydrogen and oxygen by visible light , 1981 .

[55]  M. Young,et al.  Chemical modification of a viral cage for multivalent presentation. , 2002, Chemical communications.

[56]  Ichiro Yamashita,et al.  Fabrication of nickel and chromium nanoparticles using the protein cage of apoferritin , 2003, Biotechnology and bioengineering.

[57]  S. Mann,et al.  Biomimetic synthesis of cadmium sulfide-ferritin nanocomposites , 1996 .

[58]  M. Young,et al.  Assembly of multilayer films incorporating a viral protein cage architecture. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[59]  Elizabeth C. Theil,et al.  The ferritin iron entry and exit problem , 2000 .

[60]  M. Young,et al.  Intracellular Distribution of Macrophage Targeting Ferritin–Iron Oxide Nanocomposite , 2009 .

[61]  D. Oesterhelt,et al.  Iron-oxo clusters biomineralizing on protein surfaces: structural analysis of Halobacterium salinarum DpsA in its low- and high-iron states. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[62]  J A Frank,et al.  Magnetoferritin: Characterization of a novel superparamagnetic MR contrast agent , 1994, Journal of magnetic resonance imaging : JMRI.

[63]  J. Tatur,et al.  A highly thermostable ferritin from the hyperthermophilic archaeal anaerobe Pyrococcus furiosus , 2006, Extremophiles.

[64]  R. Kolter,et al.  The crystal structure of Dps, a ferritin homolog that binds and protects DNA , 1998, Nature Structural Biology.

[65]  M. Young,et al.  Surface contribution to the anisotropy energy of spherical magnetite particles , 2005 .

[66]  T. Fuyuki,et al.  Low-temperature Polycrystalline Silicon Thin Film Transistor Flash Memory with Ferritin , 2007 .

[67]  E. Coronado,et al.  Permanent magnetism in apoferritin-encapsulated Pd nanoparticles , 2007 .

[68]  M. Ceolín,et al.  Thermal induced phase transitions and structural relaxation in apoferritin encapsulated copper nanoparticles. , 2008, Physical chemistry chemical physics : PCCP.

[69]  Signal ampflication using nanoplatform cluster formation , 2008 .

[70]  W. V. Shaw,et al.  Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts , 1991, Nature.

[71]  E. Chiancone,et al.  A Novel Non-heme Iron-binding Ferritin Related to the DNA-binding Proteins of the Dps Family in Listeria innocua* , 1997, The Journal of Biological Chemistry.

[72]  John E. Johnson,et al.  Fabrication of assembled virus nanostructures on templates of chemoselective linkers formed by scanning probe nanolithography. , 2003, Journal of the American Chemical Society.

[73]  M. A. Carrondo,et al.  Crystallization and preliminary X-ray characterization of a ferritin from the hyperthermophilic archaeon and anaerobe Pyrococcus furiosus. , 2005, Acta crystallographica. Section F, Structural biology and crystallization communications.

[74]  H. Yoshimura,et al.  Self-organized inorganic nanoparticle arrays on protein lattices. , 2005, Nano letters.

[75]  Silvio Aime,et al.  Compartmentalization of a gadolinium complex in the apoferritin cavity: a route to obtain high relaxivity contrast agents for magnetic resonance imaging. , 2002, Angewandte Chemie.

[76]  R. Brooks,et al.  T1 and T2 in the brain of healthy subjects, patients with Parkinson disease, and patients with multiple system atrophy: relation to iron content. , 1999, Radiology.

[77]  N. Steinmetz,et al.  Plant viral capsids as nanobuilding blocks: construction of arrays on solid supports. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[78]  A. Koretsky,et al.  Controlled Aggregation of Ferritin to Modulate Mri Relaxivity for Publication as Full Paper , 2008 .

[79]  S. Mann,et al.  Synthesis and Structure of an Iron(III) Sulfide-Ferritin Bioinorganic Nanocomposite , 1995, Science.

[80]  Shigeo Yoshii,et al.  In aqua structuralization of a three-dimensional configuration using biomolecules. , 2007, Nano letters.

[81]  E. Chiancone,et al.  Iron and Hydrogen Peroxide Detoxification Properties of DNA-binding Protein from Starved Cells , 2002, The Journal of Biological Chemistry.

[82]  P. Tsao,et al.  A human ferritin iron oxide nano‐composite magnetic resonance contrast agent , 2008, Magnetic resonance in medicine.

[83]  M. Young,et al.  Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles. , 2006, Journal of the American Chemical Society.

[84]  Stephen Mann,et al.  Biomimetic Synthesis and Characterization of Magnetic Proteins (Magnetoferritin) , 1998 .

[85]  E. Coronado,et al.  Apoferritin-encapsulated Ni and Co superparamagnetic nanoparticles , 2006 .

[86]  C. Robinson,et al.  Real-time monitoring of protein complexes reveals their quaternary organization and dynamics. , 2008, Chemistry & biology.

[87]  M. Young,et al.  Targeting and photodynamic killing of a microbial pathogen using protein cage architectures functionalized with a photosensitizer. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[88]  S. Mann,et al.  Magnetoferritin: in vitro synthesis of a novel magnetic protein. , 1992, Science.

[89]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[90]  R. Kolter,et al.  A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. , 1992, Genes & development.

[91]  P. Harrison,et al.  The ferritins: molecular properties, iron storage function and cellular regulation. , 1996, Biochimica et biophysica acta.

[92]  John E. Johnson,et al.  Development of Bacteriophage P22 as a Platform for Molecular Display: Genetic and Chemical Modifications of the Procapsid Exterior Surface , 2008, Chembiochem : a European journal of chemical biology.

[93]  K. Hirata,et al.  Polymerization of phenylacetylene by rhodium complexes within a discrete space of apo-ferritin. , 2009, Journal of the American Chemical Society.

[94]  Michal Neeman,et al.  Ferritin as an endogenous MRI reporter for noninvasive imaging of gene expression in C6 glioma tumors. , 2005, Neoplasia.

[95]  Jason Wiggins,et al.  Self assembled nanoparticulate CO:PT for data storage applications , 2000 .

[96]  J. Trent A review of acquired thermotolerance, heat‐shock proteins, and molecular chaperones in archaea , 1996 .

[97]  J. Dominguez‐Vera,et al.  Apoferritin as a nanoreactor for preparing metallic nanoparticles , 2008 .

[98]  E. Ruoslahti,et al.  Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. , 1998, Science.

[99]  C. Bracker,et al.  Structures derived from cowpea chlorotic mottle and brome mosaic virus protein. , 1969, Virology.

[100]  I. Yamashita,et al.  Adsorption Properties of a Gold-Binding Peptide Assessed by its Attachment to a Recombinant Apoferritin Molecule , 2008 .

[101]  G. Erker,et al.  Noncovalent insertion of ferrocenes into the protein shell of apo-ferritin. , 2008, Chemical communications.

[102]  B. Bacon,et al.  Nuclear magnetic resonance imaging of experimentally induced liver disease. , 1983, Radiology.

[103]  M. Young,et al.  Protein Engineering of a Viral Cage for Constrained Nanomaterials Synthesis , 2002 .

[104]  Duane E. Prasuhn,et al.  Polyvalent display of heme on hepatitis B virus capsid protein through coordination to hexahistidine tags. , 2008, Chemistry & biology.

[105]  Yermiyahu,et al.  Computation of surface electrical potentials of plant cell membranes . Correspondence To published zeta potentials from diverse plant sources , 1998, Plant physiology.

[106]  H. Kagawa,et al.  A self-assembling protein template for constrained synthesis and patterning of nanoparticle arrays. , 2005, Journal of the American Chemical Society.

[107]  T. Fuyuki,et al.  Non-volatile flash memory with discrete bionanodot floating gate assembled by protein template , 2008, Nanotechnology.

[108]  B. Wiedenheft,et al.  Dps-like protein from the hyperthermophilic archaeon Pyrococcus furiosus. , 2006, Journal of inorganic biochemistry.

[109]  M. Young,et al.  From metal binding to nanoparticle formation: monitoring biomimetic iron oxide synthesis within protein cages using mass spectrometry. , 2009, Angewandte Chemie.

[110]  D. Ripoll,et al.  Calculated electrostatic gradients in recombinant human H‐chain ferritin , 1998, Protein science : a publication of the Protein Society.

[111]  P. Harrison,et al.  Mineralization in ferritin: an efficient means of iron storage. , 1999, Journal of structural biology.

[112]  M. Young,et al.  Constrained synthesis of cobalt oxide nanomaterials in the 12-subunit protein cage from Listeria innocua. , 2003, Inorganic chemistry.

[113]  Ichiro Yamashita,et al.  Janus-like protein cages. Spatially controlled dual-functional surface modifications of protein cages. , 2009, Nano letters.

[114]  D. Kurtz Structural similarity and functional diversity in diiron-oxo proteins , 1997, JBIC Journal of Biological Inorganic Chemistry.

[115]  A. Belcher,et al.  Spontaneous assembly of viruses on multilayered polymer surfaces , 2006, Nature materials.

[116]  P. Prevelige,et al.  Controlled assembly of bifunctional chimeric protein cages and composition analysis using noncovalent mass spectrometry. , 2008, Journal of the American Chemical Society.

[117]  S. Mann,et al.  Reconstitution of manganese oxide cores in horse spleen and recombinant ferritins. , 1995, Journal of inorganic biochemistry.

[118]  T. Fuyuki,et al.  Electron confinement in a metal nanodot monolayer embedded in silicon dioxide produced using ferritin protein , 2006 .

[119]  I. Yamashita,et al.  Mechanism underlying specificity of proteins targeting inorganic materials. , 2006, Nano letters.

[120]  S. Mann,et al.  Crystallization at Inorganic-organic Interfaces: Biominerals and Biomimetic Synthesis , 1993, Science.

[121]  D. Tsernoglou,et al.  Crystallization and preliminary X-ray crystallographic analysis of the unusual ferritin from Listeria innocua. , 1999, Acta crystallographica. Section D, Biological crystallography.

[122]  M. Young,et al.  Protein Cage Constrained Synthesis of Ferrimagnetic Iron Oxide Nanoparticles , 2002 .

[123]  T. Fuyuki,et al.  Floating Nanodot Gate Memory Devices Based on Biomineralized Inorganic Nanodot Array as a Storage Node , 2005 .

[124]  I. Yamashita,et al.  Bio-template Synthesis of Uniform CdSe Nanoparticles Using Cage-shaped Protein, Apoferritin , 2004 .

[125]  T. Meade,et al.  Mimicking liver iron overload using liposomal ferritin preparations , 2004, Magnetic resonance in medicine.

[126]  I. Yamashita,et al.  Synthesis of Co3O4 Nanoparticles Using the Cage-Shaped Protein, Apoferritin , 2005 .

[127]  John E. Johnson,et al.  Natural supramolecular building blocks. Cysteine-added mutants of cowpea mosaic virus. , 2002, Chemistry & biology.

[128]  M. Mann,et al.  Electrospray ionization for mass spectrometry of large biomolecules. , 1989, Science.

[129]  I. Yamashita,et al.  Direct Production of a Two-Dimensional Ordered Array of Ferritin-Nanoparticles on a Silicon Substrate , 2007 .

[130]  Stephen Mann,et al.  Characterization of the manganese core of reconstituted ferritin by x-ray absorption spectroscopy , 1993 .

[131]  T. Fuyuki,et al.  Floating nanodot gate memory fabrication with biomineralized nanodot as charge storage node , 2008 .

[132]  K. Nagayama,et al.  Size-selective olefin hydrogenation by a Pd nanocluster provided in an apo-ferritin cage. , 2004, Angewandte Chemie.

[133]  D. C. Harris,et al.  Fate of oxygen during ferritin iron incorporation. , 1983, Biochemistry.

[134]  J. W. Peters,et al.  Biomimetic synthesis of a H2 catalyst using a protein cage architecture. , 2005, Nano letters.