High temperature characterization of PZT(0.52/0.48) thin-film pressure sensors

This paper reports the characterization and real-time testing of thin-film Pb(Zr0.52Ti0.48) (PZT) micro diaphragm pressure sensor at high temperature (up to 390 °C) and high pressure (up to 105 kPa) conditions. Firstly, the influence of thermal stress on micro diaphragm deformation is investigated theoretically and experimentally. Secondly, the effect of rhombohedral–tetragonal, tetragonal–cubic phase transitions and lattice parameter changes of the PZT composite on the resonance frequency are studied. Thirdly, a good performance of the proposed sensor at low-frequency oscillatory flow generated by a vibrating sphere source (frequency of 35 Hz) in silicone oil bath at different temperatures is reported. The observations lead to the conclusion that despite the fluctuations on resonant frequency with increasing temperature, the proposed PZT sensor can be effectively used in high temperature/pressure applications.

[1]  R. Roth,et al.  Piezoelectric Properties of Lead Zirconate‐Lead Titanate Solid‐Solution Ceramics , 1954 .

[2]  C. Batur,et al.  Electrical properties of PZT piezoelectric ceramic at high temperatures , 2008 .

[3]  I. Kim,et al.  The effects of sintering temperatures on dielectric, ferroelectric and electric field-induced strain of lead-free Bi0.5(Na0.78K0.22)0.5TiO3 piezoelectric ceramics synthesized by the sol–gel technique , 2010 .

[4]  Michael S. Triantafyllou,et al.  A flexible liquid crystal polymer MEMS pressure sensor array for fish-like underwater sensing , 2012 .

[5]  Y. Zhou,et al.  Modeling of residual stresses variation with thermal cycling in thermal barrier coatings , 2006 .

[6]  Jianmin Miao,et al.  Medium damping influences on the resonant frequency and quality factor of piezoelectric circular microdiaphragm sensors , 2011 .

[7]  C. Basaran,et al.  An Analytical Model for Thermal Stress Analysis of Multi-layered Microelectronic Packaging , 2004, 2005 Conference on High Density Microsystem Design and Packaging and Component Failure Analysis.

[8]  L. Reznichenko,et al.  The PZT system (PbTixZr1−xO3, 0≤x≤1.0): High temperature X-ray diffraction studies. Complete x-T phase diagram of real solid solutions (Part 3) , 2013 .

[9]  Y-D. Lee,et al.  Residual/thermal stresses in FGM and laminated thermal barrier coatings , 1994 .

[10]  Fei Xu,et al.  Domain wall motion and its contribution to the dielectric and piezoelectric properties of lead zirconate titanate films , 2001 .

[11]  S. Coombs,et al.  Nearfield detection of dipole sources by the goldfish (Carassius auratus) and the mottled sculpin (Cottus bairdi). , 1994, The Journal of experimental biology.

[12]  Douglas L. Jones,et al.  Multisensor Processing Algorithms for Underwater Dipole Localization and Tracking Using MEMS Artificial Lateral-Line Sensors , 2006, EURASIP J. Adv. Signal Process..

[13]  Susan Trolier-McKinstry,et al.  Temperature dependence of the piezoelectric response in lead zirconate titanate films , 2004 .

[14]  S. Niemcharoen,et al.  Antiferroelectric–ferroelectric phase transition in lead zinc niobate modified lead zirconate ceramics: crystal studies, microstructure, thermal and electrical properties , 2010 .

[15]  Stress influences on the ultrasonic transducers , 2005 .

[16]  Wei Ren,et al.  Temperature dependence of the complete material coefficients matrix of soft and hard doped piezoelectric lead zirconate titanate ceramics , 2007 .

[17]  William W. Clark,et al.  Effect of electrode pattern on the performance of unimorph piezoelectric diaphragm actuators , 2005, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[18]  G. Fantozzi,et al.  PZT phase diagram determination by measurement of elastic moduli , 2005 .

[19]  S. Timoshenko,et al.  Analysis of Bi-Metal Thermostats , 1925 .

[20]  Dragan Damjanovic,et al.  Antiferroelectric–ferroelectric phase boundary enhances polarization extension in rhombohedral Pb(Zr,Ti)O3 , 2011 .

[21]  Farzad Ebrahimi,et al.  Analytical Investigation on Vibrations and Dynamic Response of Functionally Graded Plate Integrated with Piezoelectric Layers in Thermal Environment , 2013 .

[22]  L. S. Ong,et al.  Analysis of the vibration modes of piezoelectric circular microdiaphragms , 2010 .

[23]  Chi-Woo Lee,et al.  Nanowire transistors without junctions. , 2010, Nature nanotechnology.

[24]  Jianguo Zhu,et al.  An enhanced mechanical quality factor and a low dielectric loss in lithium sodium niobate lead-free ceramics , 2012 .

[25]  X. Tan,et al.  Morphotropic phase boundary and electrical properties of lead-free (1−x)BaTiO3−xBi(Li1/3Ti2/3)O3 ceramics , 2010 .

[26]  Jianmin Miao,et al.  Micromachined ultrasonic transducers and arrays based on piezoelectric thick film , 2008 .

[27]  G. Haertling Ferroelectric ceramics : History and technology , 1999 .

[28]  Jianmin Miao,et al.  Piezoelectric circular microdiaphragm based pressure sensors , 2010 .

[29]  Ajay Giri Prakash Kottapalli,et al.  Flexible and Surface-Mountable Piezoelectric Sensor Arrays for Underwater Sensing in Marine Vehicles , 2013, IEEE Sensors Journal.

[30]  D. Faoite,et al.  A review of the processing, composition, and temperature-dependent mechanical and thermal properties of dielectric technical ceramics , 2012, Journal of Materials Science.

[31]  C. W. Nelson,et al.  Thermal stress in bonded joints , 1979 .

[32]  G. Fantozzi,et al.  Elastic modulus and mechanical loss associated with phase transitions and domain walls motions in PZT based ceramics , 1996 .

[33]  Pramod Rastogi,et al.  Recent developments in interferometry for microsystems metrology , 2009 .

[34]  J. Miao,et al.  Giant Flexoelectric Polarization in a Micromachined Ferroelectric Diaphragm , 2013 .