Genomic Insights into Campylobacter jejuni Virulence and Population Genetics

Campylobacter jejuni has long been recognized as a main food-borne pathogen in many parts of the world. Natural reservoirs include a wide variety of domestic and wild birds and mammals, whose intestines offer a suitable biological niche for the survival and dissemination of the organism. Understanding the genetic basis of the biology and pathogenicity of C. jejuni is vital to prevent and control Campylobacter-associated infections. The recent progress in sequencing techniques has allowed for a rapid increase in our knowledge of the molecular biology and the genetic structures of Campylobacter. Single-molecule realtime (SMRT) sequencing, which goes beyond four-base sequencing, revealed the role of DNA methylation in modulating the biology and virulence of C. jejuni at the level of epigenetics. In this review, we will provide an up-to-date review on recent advances in understanding C. jejuni genomics, including structural features of genomes, genetic traits of virulence, population genetics, and epigenetics.

[1]  I. Connerton,et al.  Phase variation of a Type IIG restriction-modification enzyme alters site-specific methylation patterns and gene expression in Campylobacter jejuni strain NCTC11168 , 2016, Nucleic acids research.

[2]  H. Rautelin,et al.  Comparative genomics and genome biology of invasive Campylobacter jejuni , 2015, Scientific Reports.

[3]  J. Corander,et al.  Genetic import and phenotype specific alleles associated with hyper-invasion in Campylobacter jejuni , 2015, BMC Genomics.

[4]  J. Casadesús,et al.  DNA methylation in bacteria: from the methyl group to the methylome. , 2015, Current opinion in microbiology.

[5]  Daniel J. Wilson,et al.  Rapid host switching in generalist Campylobacter strains erodes the signal for tracing human infections , 2015, The ISME Journal.

[6]  J. Bruce,et al.  Analysis of the Campylobacter jejuni Genome by SMRT DNA Sequencing Identifies Restriction-Modification Motifs , 2015, PloS one.

[7]  Zhangqi Shen,et al.  Characterization of the genetic environment of the ribosomal RNA methylase gene erm(B) in Campylobacter jejuni. , 2015, The Journal of antimicrobial chemotherapy.

[8]  Paul J. Plummer,et al.  A comparative analysis of methylome profiles of Campylobacter jejuni sheep abortion isolate and gastroenteric strains using PacBio data , 2015, Front. Microbiol..

[9]  J. Sargeant,et al.  Systematic review and meta-analysis of the proportion of Campylobacter cases that develop chronic sequelae , 2014, BMC Public Health.

[10]  Richard J. Roberts,et al.  REBASE—a database for DNA restriction and modification: enzymes, genes and genomes , 2009, Nucleic Acids Res..

[11]  Daya Marasini,et al.  Exploring PFGE for Detecting Large Plasmids in Campylobacter jejuni and Campylobacter coli Isolated from Various Retail Meats , 2014, Pathogens.

[12]  E. Schadt,et al.  Single molecule-level detection and long read-based phasing of epigenetic variations in bacterial methylomes , 2014, Nature Communications.

[13]  Rauni I. Kivistö,et al.  Evolution and Comparative Genomics of Campylobacter jejuni ST-677 Clonal Complex , 2014, Genome biology and evolution.

[14]  B. Taciak,et al.  The Cj0588 protein is a Campylobacter jejuni RNA methyltransferase. , 2014, Biochemical and biophysical research communications.

[15]  M. Tobin-D'Angelo,et al.  Incidence and Trends of Infection with Pathogens Transmitted Commonly Through Food — Foodborne Diseases Active Surveillance Network, 10 U.S. Sites, 2006–2013 , 2014, MMWR. Morbidity and mortality weekly report.

[16]  Jianzhong Shen,et al.  Report of ribosomal RNA methylase gene erm(B) in multidrug-resistant Campylobacter coli. , 2014, The Journal of antimicrobial chemotherapy.

[17]  Keith A. Jolley,et al.  A Reference Pan-Genome Approach to Comparative Bacterial Genomics: Identification of Novel Epidemiological Markers in Pathogenic Campylobacter , 2014, PloS one.

[18]  O. Sahin,et al.  Genetic Diversity and Antimicrobial Susceptibility of Campylobacter jejuni Isolates Associated with Sheep Abortion in the United States and Great Britain , 2014, Journal of Clinical Microbiology.

[19]  C. Szymanski,et al.  Biological Roles of the O-Methyl Phosphoramidate Capsule Modification in Campylobacter jejuni , 2014, PLoS ONE.

[20]  C. Sihlbom,et al.  A novel O-linked glycan modulates Campylobacter jejuni major outer membrane protein-mediated adhesion to human histo-blood group antigens and chicken colonization , 2014, Open Biology.

[21]  O. Sahin,et al.  Multi-omics Approaches to Deciphering a Hypervirulent Strain of Campylobacter jejuni , 2013, Genome biology and evolution.

[22]  Emily J. Kay,et al.  Characterization of water and wildlife strains as a subgroup of Campylobacter jejuni using DNA microarrays. , 2013, Environmental microbiology.

[23]  Keith A. Jolley,et al.  Genome-wide association study identifies vitamin B5 biosynthesis as a host specificity factor in Campylobacter , 2013, Proceedings of the National Academy of Sciences.

[24]  M. Quail,et al.  Unusual features in organisation of capsular polysaccharide-related genes of C. jejuni strain X. , 2013, Gene.

[25]  Awais Anjum Mechanistic and functional analysis of Cj0031: a phase variable methyltransferase in Campylobacter jejuni , 2013 .

[26]  M. Stanhope,et al.  Comparative characterization of the virulence gene clusters (lipooligosaccharide [LOS] and capsular polysaccharide [CPS]) for Campylobacter coli, Campylobacter jejuni subsp. jejuni and related Campylobacter species. , 2013, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[27]  V. Nagaraja,et al.  Diverse Functions of Restriction-Modification Systems in Addition to Cellular Defense , 2013, Microbiology and Molecular Reviews.

[28]  M. Maiden,et al.  Marked host specificity and lack of phylogeographic population structure of Campylobacter jejuni in wild birds , 2013, Molecular ecology.

[29]  M. Maiden,et al.  Campylobacter sequence typing databases: applications and future prospects. , 2012, Microbiology.

[30]  Richard J. Roberts,et al.  The methylomes of six bacteria , 2012, Nucleic acids research.

[31]  S. Krishna,et al.  Context-dependent conservation of DNA methyltransferases in bacteria , 2012, Nucleic acids research.

[32]  M. V. Tretyakov,et al.  Phase variable genes of Campylobacter jejuni exhibit high mutation rates and specific mutational patterns but mutability is not the major determinant of population structure during host colonization , 2012, Nucleic acids research.

[33]  C. Szymanski,et al.  Campylobacter Polysaccharide Capsules: Virulence and Vaccines , 2012, Front. Cell. Inf. Microbio..

[34]  P. Fearnhead,et al.  Whole-Genome Comparison of Two Campylobacter jejuni Isolates of the Same Sequence Type Reveals Multiple Loci of Different Ancestral Lineage , 2011, PloS one.

[35]  K. Ottemann,et al.  Motility and chemotaxis in Campylobacter and Helicobacter . , 2011, Annual review of microbiology.

[36]  S. Sheppard,et al.  Niche segregation and genetic structure of Campylobacter jejuni populations from wild and agricultural host species , 2011, Molecular ecology.

[37]  S. Sheppard,et al.  Introgression in the genus Campylobacter: generation and spread of mosaic alleles , 2011, Microbiology.

[38]  N. Hall,et al.  Genomic variations define divergence of water/wildlife-associated Campylobacter jejuni niche specialists from common clonal complexes , 2011, Environmental microbiology.

[39]  Jeffrey E. Barrick,et al.  Standing Genetic Variation in Contingency Loci Drives the Rapid Adaptation of Campylobacter jejuni to a Novel Host , 2011, PloS one.

[40]  A. Zuccolo,et al.  Complete Genome Sequence of Campylobacter jejuni Strain S3 , 2011, Journal of bacteriology.

[41]  M. Widdowson,et al.  Foodborne Illness Acquired in the United States—Major Pathogens , 2011, Emerging infectious diseases.

[42]  Honghe Sun,et al.  Genomic Characterization of the Guillain-Barre Syndrome-Associated Campylobacter jejuni ICDCCJ07001 Isolate , 2010, PloS one.

[43]  Peter F. Hallin,et al.  Genomic Characterization of Campylobacter jejuni Strain M1 , 2010, PloS one.

[44]  Michael J. Stanhope,et al.  Evolutionary Dynamics of Complete Campylobacter Pan-Genomes and the Bacterial Species Concept , 2010, Genome biology and evolution.

[45]  F. Minelli,et al.  Prevalence of virulence-associated genes and cytolethal distending toxin production in Campylobacter spp. isolated in Italy. , 2010, Comparative immunology, microbiology and infectious diseases.

[46]  Daniel Falush,et al.  Population Genetics of Campylobacter , 2010 .

[47]  U. Groß,et al.  Campylobacter jejuni: a brief overview on pathogenicity-associated factors and disease-mediating mechanisms. , 2010, International journal of medical microbiology : IJMM.

[48]  Daniel J. Wilson,et al.  Rapid Evolution and the Importance of Recombination to the Gastroenteric Pathogen Campylobacter jejuni , 2008, Molecular biology and evolution.

[49]  I. Barnes,et al.  Role of the Campylobacter jejuni Cj1461 DNA Methyltransferase in Regulating Virulence Characteristics , 2008, Journal of bacteriology.

[50]  P. Gajer,et al.  The Pangenome Structure of Escherichia coli: Comparative Genomic Analysis of E. coli Commensal and Pathogenic Isolates , 2008, Journal of bacteriology.

[51]  A. Sałamaszyńska-Guz,et al.  Functional Analysis of the Campylobacter jejuni cj0183 and cj0588 Genes , 2008, Current Microbiology.

[52]  Paul J. Plummer,et al.  Emergence of a Tetracycline-Resistant Campylobacter jejuni Clone Associated with Outbreaks of Ovine Abortion in the United States , 2008, Journal of Clinical Microbiology.

[53]  B. Pearson,et al.  The Complete Genome Sequence of Campylobacter jejuni Strain 81116 (NCTC11828) , 2007, Journal of bacteriology.

[54]  V. DiRita,et al.  Campylobacter jejuni: molecular biology and pathogenesis , 2007, Nature Reviews Microbiology.

[55]  G. Ruiz-Palacios The health burden of Campylobacter infection and the impact of antimicrobial resistance: playing chicken. , 2007, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[56]  L. Du,et al.  Unique Features of a Highly Pathogenic Campylobacter jejuni Strain , 2007, Infection and Immunity.

[57]  D. Ala'aldeen,et al.  CapA, an Autotransporter Protein of Campylobacter jejuni, Mediates Association with Human Epithelial Cells and Colonization of the Chicken Gut , 2006, Journal of bacteriology.

[58]  D. Hendrixson,et al.  Analysis of the Roles of FlgP and FlgQ in Flagellar Motility of Campylobacter jejuni , 2006, Journal of bacteriology.

[59]  J. Casadesús,et al.  Epigenetic Gene Regulation in the Bacterial World , 2006, Microbiology and Molecular Biology Reviews.

[60]  C. Parker,et al.  Comparative Genomic Analysis of Campylobacter jejuni Strains Reveals Diversity Due to Genomic Elements Similar to Those Present in C. jejuni Strain RM1221 , 2006, Journal of Clinical Microbiology.

[61]  A. van Belkum,et al.  Lack of Association between the Presence of the pVir Plasmid and Bloody Diarrhea in Campylobacter jejuni Enteritis , 2006, Journal of Clinical Microbiology.

[62]  D. Wion,et al.  N6-methyl-adenine: an epigenetic signal for DNA–protein interactions , 2006, Nature Reviews Microbiology.

[63]  A. Fernández-Astorga,et al.  Detection of cdtA, cdtB, and cdtC genes in Campylobacter jejuni by multiplex PCR. , 2006, International journal of medical microbiology : IJMM.

[64]  W. Schröder,et al.  Primary structure analysis and adhesion studies on the major outer membrane protein of Campylobacter jejuni. , 2006, FEMS microbiology letters.

[65]  Jason Hinds,et al.  Comparative phylogenomics of the food-borne pathogen Campylobacter jejuni reveals genetic markers predictive of infection source. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[66]  K. Itoh,et al.  Promoter Analysis of Cytolethal Distending Toxin Genes (cdtA, B, and C) and Effect of a luxS Mutation on CDT Production in Campylobacter jejuni , 2005, Microbiology and immunology.

[67]  M. AbuOun,et al.  Cytolethal Distending Toxin (CDT)-Negative Campylobacter jejuni Strains and Anti-CDT Neutralizing Antibodies Are Induced during Human Infection but Not during Colonization in Chickens , 2005, Infection and Immunity.

[68]  S. O'Brien,et al.  Disease Risks from Foods, England and Wales, 1996–2000 , 2005, Emerging infectious diseases.

[69]  B. Pearson,et al.  Diversity within the Campylobacter jejuni type I restriction-modification loci. , 2005, Microbiology.

[70]  David A Rasko,et al.  Major Structural Differences and Novel Potential Virulence Mechanisms from the Genomes of Multiple Campylobacter Species , 2005, PLoS biology.

[71]  Jianjun Li,et al.  The crucial role of Campylobacter jejuni genes in anti-ganglioside antibody induction in Guillain-Barre syndrome. , 2004, The Journal of clinical investigation.

[72]  I. Goodhead,et al.  Analysis of Campylobacter jejuni capsular loci reveals multiple mechanisms for the generation of structural diversity and the ability to form complex heptoses , 2004, Molecular microbiology.

[73]  B. Pearson,et al.  Nucleotide sequences and comparison of two large conjugative plasmids from different Campylobacter species. , 2004, Microbiology.

[74]  Eduardo N. Taboada,et al.  Large-Scale Comparative Genomics Meta-Analysis of Campylobacter jejuni Isolates Reveals Low Level of Genome Plasticity , 2004, Journal of Clinical Microbiology.

[75]  A. Stintzi,et al.  Identification of Campylobacter jejuni ATCC 43431-Specific Genes by Whole Microbial Genome Comparisons , 2004, Journal of bacteriology.

[76]  M. Wösten,et al.  The FlgS/FlgR Two-component Signal Transduction System Regulates the fla Regulon in Campylobacter jejuni* , 2004, Journal of Biological Chemistry.

[77]  Harry L. T. Mobley,et al.  Pathogenic Escherichia coli , 2004, Nature Reviews Microbiology.

[78]  B. Pearson,et al.  Comparative genome analysis of Campylobacter jejuni using whole genome DNA microarrays , 2003, FEBS letters.

[79]  V. DiRita,et al.  Transcription of σ54‐dependent but not σ28‐dependent flagellar genes in Campylobacter jejuni is associated with formation of the flagellar secretory apparatus , 2003, Molecular microbiology.

[80]  J. Heitman,et al.  A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. , 2003, Nucleic acids research.

[81]  B. Duim,et al.  Molecular Characterization of Campylobacter jejuni Clones: A Basis for Epidemiologic Investigation , 2002, Emerging infectious diseases.

[82]  Albert Jeltsch,et al.  Beyond Watson and Crick: DNA Methylation and Molecular Enzymology of DNA Methyltransferases , 2002, Chembiochem : a European journal of chemical biology.

[83]  T. Wassenaar,et al.  Identification of genetic differences between two Campylobacter jejuni strains with different colonization potentials. , 2002, Microbiology.

[84]  R. Isokpehi,et al.  Human Campylobacteriosis in Developing Countries1 , 2002, Emerging infectious diseases.

[85]  C. Szymanski,et al.  Phase Variation of Campylobacter jejuni 81-176 Lipooligosaccharide Affects Ganglioside Mimicry and Invasiveness In Vitro , 2002, Infection and Immunity.

[86]  Eduardo N. Taboada,et al.  The Genetic Bases for the Variation in the Lipo-oligosaccharide of the Mucosal Pathogen, Campylobacter jejuni , 2002, The Journal of Biological Chemistry.

[87]  B. Barrell,et al.  Whole genome comparison of Campylobacter jejuni human isolates using a low-cost microarray reveals extensive genetic diversity. , 2001, Genome research.

[88]  J. Galán,et al.  CdtA, CdtB, and CdtC Form a Tripartite Complex That Is Required for Cytolethal Distending Toxin Activity , 2001, Infection and Immunity.

[89]  M. Hume,et al.  Role of Campylobacter jejuni potential virulence genes in cecal colonization. , 2001, Avian diseases.

[90]  B. Allos Campylobacter jejuni Infections: update on emerging issues and trends. , 2001, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[91]  E. Hani,et al.  JlpA, a novel surface‐exposed lipoprotein specific to Campylobacter jejuni, mediates adherence to host epithelial cells , 2001, Molecular microbiology.

[92]  J. Galán,et al.  A bacterial toxin that controls cell cycle progression as a deoxyribonuclease I-like protein. , 2000, Science.

[93]  R. Alm,et al.  Involvement of a Plasmid in Virulence of Campylobacter jejuni 81-176 , 2000, Infection and Immunity.

[94]  G. Labesse,et al.  MOMP (major outer membrane protein) of Campylobacter jejuni; a versatile pore‐forming protein , 2000, FEBS letters.

[95]  B. Barrell,et al.  The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences , 2000, Nature.

[96]  M. Blaser,et al.  Pathophysiology of Campylobacter jejuni infections of humans. , 1999, Microbes and infection.

[97]  C. Pickett,et al.  The cytolethal distending toxin family. , 1999, Trends in microbiology.

[98]  M. Hume,et al.  The absence of cecal colonization of chicks by a mutant of Campylobacter jejuni not expressing bacterial fibronectin-binding protein. , 1999, Avian diseases.

[99]  M. Konkel,et al.  Bacterial secreted proteins are required for the internalization of Campylobacter jejuni into cultured mammalian cells , 1999, Molecular microbiology.

[100]  M. Blaser,et al.  Mutation in the peb1A Locus ofCampylobacter jejuni Reduces Interactions with Epithelial Cells and Intestinal Colonization of Mice , 1998, Infection and Immunity.

[101]  I. Moser,et al.  Campylobacter jejuni major outer membrane protein and a 59-kDa protein are involved in binding to fibronectin and INT 407 cell membranes. , 1997, FEMS microbiology letters.

[102]  R. Tauxe,et al.  Emerging foodborne diseases: an evolving public health challenge. , 1997, Emerging infectious diseases.

[103]  T. Wassenaar Toxin production by Campylobacter spp , 1997, Clinical microbiology reviews.

[104]  M. Konkel,et al.  Identification and molecular cloning of a gene encoding a fibronectin‐binding protein (CadF) from Campylobacter jejuni , 1997, Molecular microbiology.

[105]  T. Trust,et al.  Isolation of motile and non‐motile insertional mutants of Campylobacter jejuni: the role of motility in adherence and invasion of eukaryotic cells , 1994, Molecular microbiology.

[106]  M. C. Peterson Clinical aspects of Campylobacter jejuni infections in adults. , 1994, The Western journal of medicine.

[107]  M. Blaser,et al.  PEB1, the major cell-binding factor of Campylobacter jejuni, is a homolog of the binding component in gram-negative nutrient transport systems. , 1993, The Journal of biological chemistry.

[108]  J. M. Smith,et al.  How clonal are bacteria? , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[109]  P. Edmonds,et al.  Presence of methylated adenine in GATC sequences in chromosomal DNAs from Campylobacter species , 1992, Journal of bacteriology.

[110]  W. Gaastra,et al.  Structural and functional analysis of two Campylobacter jejuni flagellin genes. , 1990, The Journal of biological chemistry.

[111]  B. Levin Periodic selection, infectious gene exchange and the genetic structure of E. coli populations. , 1981, Genetics.

[112]  Kathy T. Mou Mechanisms and roles of the LuxS system, methyl recycling, and DNA methylation on the physiology of Campylobacter jejuni , 2015 .

[113]  J. Olson,et al.  Barriers to Horizontal Gene Transfer in Campylobacter jejuni. , 2012, Advances in applied microbiology.

[114]  Jake K. Byrnes,et al.  Genome-wide association study of copy number variation in 16,000 cases of eight common diseases and 3,000 shared controls , 2010, Nature.

[115]  M. Maiden,et al.  Population Biology of Campylobacter jejuni and Related Organisms , 2008 .

[116]  B. Pearson,et al.  A role for the tet(O) plasmid in maintaining Campylobacter plasticity. , 2007, Plasmid.

[117]  C. Parker,et al.  Comparative Genomic Analysis of Campylobacter jejuni Strains Reveals Diversity Due to Genomic Elements Similar to Those Present in C . jejuni Strain RM 1221 , 2006 .

[118]  M. Konkel,et al.  Maximal adherence and invasion of INT 407 cells by Campylobacter jejuni requires the CadF outer-membrane protein and microfilament reorganization. , 2003, Microbiology.

[119]  J. Bujnicki,et al.  Understanding the evolution of restriction-modification systems: clues from sequence and structure comparisons. , 2001, Acta biochimica Polonica.

[120]  Robert V. Tauxe,et al.  Epidemiology of Campylobacter jejuni infections in the United States and other industrialized nations , 2000 .

[121]  M. Konkel,et al.  Identification of proteins required for the internalization of Campylobacter jejuni into cultured mammalian cells. , 1999, Advances in experimental medicine and biology.