Roots of the derivatives of some random polynomials

Our observations show that the sets of real (respectively complex) roots of the derivatives of some classical families of random polynomials admit a rich variety of patterns looking like discretized curves. To bring out the shapes of the suggested curves, we introduce an original use of fractional derivatives. Then we present several conjectures and outline a strategy to explain the presented phenomena. This strategy is based on asymptotic geometric properties of the corresponding complex critical points sets.

[1]  Marie-Françoise Roy,et al.  Real algebraic geometry , 1992 .

[2]  Alan Edelman,et al.  How many zeros of a random polynomial are real , 1995 .

[3]  P. Diaconis Patterns in eigenvalues: the 70th Josiah Willard Gibbs lecture , 2003 .

[4]  Kambiz Farahmand Topics in Random Polynomials , 1998 .

[5]  A. T. Bharucha-Reid,et al.  The Number and Expected Number of Real Zeros of Other Random Polynomials , 1986 .

[6]  P. Andrews,et al.  WHERE NOT TO FIND THE CRITICAL POINTS OF A POLYNOMIAL: VARIATION ON A PUTNAM THEME , 1995 .

[7]  André Galligo,et al.  Computing monodromy via continuation methods on random Riemann surfaces , 2011, Theor. Comput. Sci..

[8]  Mark van Hoeij,et al.  Approximate bivariate factorization: a geometric viewpoint , 2007, SNC '07.

[9]  Q. I. Rahman,et al.  Analytic theory of polynomials , 2002 .

[10]  André Galligo,et al.  Virtual roots of a real polynomial and fractional derivatives , 2011, ISSAC '11.

[11]  L. Shepp,et al.  The Complex Zeros of Random Polynomials , 1995 .

[12]  André Galligo,et al.  Random polynomials and expected complexity of bisection methods for real solving , 2010, ISSAC.

[13]  André Galligo,et al.  On the cut‐off phenomenon for the transitivity of randomly generated subgroups , 2012, Random Struct. Algorithms.

[14]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[15]  Kenneth B. Stolarsky Analytic Theory of Polynomials by Qazi Ibadur Rahman; Gerhard Schmeisser; Complex Polynomials by Terry Sheil-Small , 2005, Am. Math. Mon..

[16]  Michel Coste,et al.  Generalized Budan-Fourier theorem and virtual roots , 2005, J. Complex..

[17]  K. B. Oldham,et al.  The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order , 1974 .

[18]  L. González-Vega,et al.  Virtual roots of real polynomials , 1998, 1712.01952.

[19]  K. Farahmand On the Average Number of Real Roots of a Random Algebraic Equation , 1986 .