Output-feedback synchronizability of linear time-invariant systems

Abstract The paper studies the output-feedback synchronization problem for a network of identical, linear time-invariant systems. A criterion to test network synchronization is derived and the class of output-feedback synchronizable systems is introduced and characterized by sufficient and necessary conditions. In particular it is observed that output-feedback stabilizability is sufficient but not necessary for output-feedback synchronizability. In the special case of single-input single-output systems, conditions are derived in the frequency domain. The theory is illustrated with several examples.

[1]  Wei Ren,et al.  On Consensus Algorithms for Double-Integrator Dynamics , 2007, IEEE Transactions on Automatic Control.

[2]  Lin Huang,et al.  Consensus of Multiagent Systems and Synchronization of Complex Networks: A Unified Viewpoint , 2016, IEEE Transactions on Circuits and Systems I: Regular Papers.

[3]  Chaouki T. Abdallah,et al.  Static output feedback: a survey , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[4]  Laura Dal Col,et al.  A linear consensus approach to quality-fair video delivery , 2014, 53rd IEEE Conference on Decision and Control.

[5]  Z. Duan,et al.  Analyzing and controlling the network synchronization regions , 2007 .

[6]  Ji-Feng Zhang,et al.  Necessary and Sufficient Conditions for Consensusability of Linear Multi-Agent Systems , 2010, IEEE Transactions on Automatic Control.

[7]  Ziyang Meng,et al.  Delay-Induced Synchronization of Identical Linear Multiagent Systems , 2013, IEEE Transactions on Cybernetics.

[8]  S. Strogatz Exploring complex networks , 2001, Nature.

[9]  Rodolphe Sepulchre,et al.  Synchronization in networks of identical linear systems , 2009, Autom..

[10]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[11]  Naomi Ehrich Leonard,et al.  Stabilization of Three-Dimensional Collective Motion , 2008, Commun. Inf. Syst..

[12]  Florian Dörfler,et al.  Synchronization in complex networks of phase oscillators: A survey , 2014, Autom..

[13]  Ruggero Carli,et al.  Network Clock Synchronization Based on the Second-Order Linear Consensus Algorithm , 2014, IEEE Transactions on Automatic Control.

[14]  P. Chebotarev,et al.  On of the Spectra of Nonsymmetric Laplacian Matrices , 2004, math/0508176.

[15]  Randal W. Beard,et al.  Consensus seeking in multiagent systems under dynamically changing interaction topologies , 2005, IEEE Transactions on Automatic Control.

[16]  D. Youla,et al.  Single-loop feedback-stabilization of linear multivariable dynamical plants , 1974, Autom..

[17]  Ella M. Atkins,et al.  Distributed multi‐vehicle coordinated control via local information exchange , 2007 .

[18]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[19]  Frank Allgöwer,et al.  An internal model principle is necessary and sufficient for linear output synchronization , 2011, Autom..

[20]  Naomi Ehrich Leonard,et al.  Stabilization of Planar Collective Motion With Limited Communication , 2008, IEEE Transactions on Automatic Control.

[21]  Alain Sarlette,et al.  Synchronization and balancing on the N-torus , 2007, Syst. Control. Lett..

[22]  Rodolphe Sepulchre,et al.  Synchronization in networks of identical linear systems , 2008, 2008 47th IEEE Conference on Decision and Control.

[23]  Richard M. Murray,et al.  Information flow and cooperative control of vehicle formations , 2004, IEEE Transactions on Automatic Control.

[24]  Naomi Ehrich Leonard,et al.  Robustness of noisy consensus dynamics with directed communication , 2010, Proceedings of the 2010 American Control Conference.

[25]  Carlos E. de Souza,et al.  A necessary and sufficient condition for output feedback stabilizability , 1995, Autom..

[26]  Sezai Emre Tuna,et al.  Synchronizing linear systems via partial-state coupling , 2008, Autom..

[27]  Lin Huang,et al.  Synchronization of weighted networks and complex synchronized regions , 2008 .