Structural insights into the mechanism and inhibition of eukaryotic O‐GlcNAc hydrolysis

[1]  J. Turkenburg,et al.  Structure and mechanism of a bacterial β-glucosaminidase having O-GlcNAcase activity , 2006, Nature Structural &Molecular Biology.

[2]  J. Hanover,et al.  Inhibition of O-GlcNAcase by PUGNAc is dependent upon the oxime stereochemistry. , 2006, Bioorganic & medicinal chemistry.

[3]  J. Hanover,et al.  The Hexosamine Signaling Pathway: Deciphering the "O-GlcNAc Code" , 2005, Science's STKE.

[4]  Matthew S Macauley,et al.  O-GlcNAcase catalyzes cleavage of thioglycosides without general acid catalysis. , 2005, Journal of the American Chemical Society.

[5]  J. Hanover,et al.  Mutational Analysis of the Catalytic Domain of O-Linked N-Acetylglucosaminyl Transferase* , 2005, Journal of Biological Chemistry.

[6]  G. Hart,et al.  Perturbations in O-linked β-N-Acetylglucosamine Protein Modification Cause Severe Defects in Mitotic Progression and Cytokinesis* , 2005, Journal of Biological Chemistry.

[7]  A. Boraston,et al.  Cloning, recombinant production, crystallization and preliminary X-ray diffraction studies of a family 84 glycoside hydrolase from Clostridium perfringens. , 2005, Acta crystallographica. Section F, Structural biology and crystallization communications.

[8]  Seung-Yoon Park,et al.  O-GlcNAc modification on IRS-1 and Akt2 by PUGNAc inhibits their phosphorylation and induces insulin resistance in rat primary adipocytes , 2005, Experimental & Molecular Medicine.

[9]  A. Paterson,et al.  Characterization of the Histone Acetyltransferase (HAT) Domain of a Bifunctional Protein with Activable O-GlcNAcase and HAT Activities*♦ , 2004, Journal of Biological Chemistry.

[10]  R. Schmidt,et al.  Synthesis of an S-linked glycopeptide analog derived from human Tamm-Horsfall glycoprotein. , 2004, Organic & biomolecular chemistry.

[11]  D. Bolam,et al.  Carbohydrate-binding modules: fine-tuning polysaccharide recognition. , 2004, The Biochemical journal.

[12]  A. W. Schüttelkopf,et al.  PRODRG: a tool for high-throughput crystallography of protein-ligand complexes. , 2004, Acta crystallographica. Section D, Biological crystallography.

[13]  G. Hart,et al.  O-GlcNAc a sensor of cellular state: the role of nucleocytoplasmic glycosylation in modulating cellular function in response to nutrition and stress. , 2004, Biochimica et biophysica acta.

[14]  B. Synstad,et al.  Interactions of a Family 18 Chitinase with the Designed Inhibitor HM508 and Its Degradation Product, Chitobiono-δ-lactone* , 2004, Journal of Biological Chemistry.

[15]  G. Davies,et al.  Structural basis for ligand binding and processivity in cellobiohydrolase Cel6A from Humicola insolens. , 2003, Structure.

[16]  Michael P. Myers,et al.  Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate , 2003, Nature.

[17]  G. Parker,et al.  Insulin Resistance of Glycogen Synthase Mediated byO-Linked N-Acetylglucosamine* , 2003, The Journal of Biological Chemistry.

[18]  Spencer J. Williams,et al.  Aspartate 313 in the Streptomyces plicatusHexosaminidase Plays a Critical Role in Substrate-assisted Catalysis by Orienting the 2-Acetamido Group and Stabilizing the Transition State* , 2002, The Journal of Biological Chemistry.

[19]  J. Schultz,et al.  Prediction of structure and functional residues for O‐GlcNAcase, a divergent homologue of acetyltransferases , 2002, FEBS letters.

[20]  Xiaoyong Yang,et al.  Recruitment of O-GlcNAc Transferase to Promoters by Corepressor mSin3A Coupling Protein O-GlcNAcylation to Transcriptional Repression , 2002, Cell.

[21]  G. Hart,et al.  Elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in 3T3-L1 adipocytes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[22]  E. Bokma,et al.  Expression and characterization of active site mutants of hevamine, a chitinase from the rubber tree Hevea brasiliensis. , 2002, European journal of biochemistry.

[23]  G. Hart,et al.  Dynamic O-Glycosylation of Nuclear and Cytosolic Proteins , 2002, The Journal of Biological Chemistry.

[24]  J. Rothstein,et al.  Mechanisms for Reversible Regulation between G13 and Rho Exchange Factors* , 2002, The Journal of Biological Chemistry.

[25]  Stephen G. Withers,et al.  Biochemical and Structural Assessment of the 1-N-Azasugar GalNAc-isofagomine as a Potent Family 20 β-N-Acetylhexosaminidase Inhibitor* , 2001, The Journal of Biological Chemistry.

[26]  S. Gåseidnes,et al.  Structural insights into the catalytic mechanism of a family 18 exo-chitinase , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[27]  J. E. Kudlow,et al.  The potential mechanism of the diabetogenic action of streptozotocin: inhibition of pancreatic beta-cell O-GlcNAc-selective N-acetyl-beta-D-glucosaminidase. , 2001, The Biochemical journal.

[28]  G. Hart,et al.  Dynamic O-Glycosylation of Nuclear and Cytosolic Proteins , 2001, The Journal of Biological Chemistry.

[29]  D. Barford,et al.  Molecular basis for the dephosphorylation of the activation segment of the insulin receptor by protein tyrosine phosphatase 1B. , 2000, Molecular cell.

[30]  P. Rizkallah,et al.  Crystal structure of hyaluronidase, a major allergen of bee venom. , 2000, Structure.

[31]  Y. Ichikawa,et al.  Facile synthesis of N-Fmoc-serine-S-GlcNAc: a potential molecular probe for the functional study of O-GlcNAc. , 2000, Bioorganic & medicinal chemistry letters.

[32]  J. Hanover,et al.  Functional Expression of O-linked GlcNAc Transferase , 2000, The Journal of Biological Chemistry.

[33]  Anastassis Perrakis,et al.  Automated protein model building combined with iterative structure refinement , 1999, Nature Structural Biology.

[34]  Thomas C. Terwilliger,et al.  Automated MAD and MIR structure solution , 1999, Acta crystallographica. Section D, Biological crystallography.

[35]  E. Meese,et al.  Novel immunogenic antigen homologous to hyaluronidase in meningioma. , 1998, Human molecular genetics.

[36]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[37]  R. Haltiwanger,et al.  Modulation of O-LinkedN-Acetylglucosamine Levels on Nuclear and Cytoplasmic Proteins in Vivo Using the PeptideO-GlcNAc-β-N-acetylglucosaminidase InhibitorO-(2-Acetamido-2-deoxy-dglucopyranosylidene)amino-N-phenylcarbamate* , 1998, The Journal of Biological Chemistry.

[38]  Keith S. Wilson,et al.  Substrate-Assisted Catalysis Unifies Two Families of Chitinolytic Enzymes , 1997 .

[39]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[40]  G. Hart,et al.  c-Myc Is Glycosylated at Threonine 58, a Known Phosphorylation Site and a Mutational Hot Spot in Lymphomas (*) , 1995, The Journal of Biological Chemistry.

[41]  D. Barford,et al.  Structural basis for phosphotyrosine peptide recognition by protein tyrosine phosphatase 1B. , 1995, Science.

[42]  K. H. Kalk,et al.  Crystal structures of hevamine, a plant defence protein with chitinase and lysozyme activity, and its complex with an inhibitor. , 1994, Structure.

[43]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[44]  G. Hart,et al.  Purification and characterization of an O-GlcNAc selective N-acetyl-beta-D-glucosaminidase from rat spleen cytosol. , 1994, The Journal of biological chemistry.

[45]  C. Sander,et al.  Protein structure comparison by alignment of distance matrices. , 1993, Journal of molecular biology.

[46]  M. Horsch,et al.  N‐Acetylgucosaminono‐1,5‐lactone oxime and the corresponding (phenylcarbamoyl)oxime , 1991 .

[47]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.

[48]  G. Hart,et al.  Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc. , 1984, The Journal of biological chemistry.

[49]  H. Paulsen,et al.  Synthese der glycopeptide O-β-d-galactopyranosyl-(1→3)-O-(2-acetamido-2-desoxy-α-d-galactopyranosyl)-(1→3)-l-serin und -l-threonin , 1982 .

[50]  Matthew S Macauley,et al.  O -GlcNAcase USES SUBSTRATE-ASSISTED CATALYSIS: KINETIC ANALYSIS AND DEVELOPMENT OF HIGHLY SELECTIVE MECHANISM-INSPIRED INHIBITORS. , 2005 .

[51]  M. Horsch,et al.  N-acetylglucosaminono-1,5-lactone oxime and the corresponding (phenylcarbamoyl)oxime. Novel and potent inhibitors of beta-N-acetylglucosaminidase. , 1991, European journal of biochemistry.

[52]  A. Spatola,et al.  An Advantageous Method for the Rapid Removal of Hydrogenolysable Protecting Groups under Ambient Conditions; Synthesis of Leucine-enkephalin , 1980 .

[53]  P. Emsley,et al.  Coot: model-building tools for molecular graphics. , 2004, Acta crystallographica. Section D, Biological crystallography.