Rational Solutions for the Time-Fractional Diffusion Equation

A uniform rational approximation of the Mittag-Leffler function is derived which serves as a global approximant, accounting for both the Taylor series for small arguments and asymptotic series for ...

[1]  Harry Pollard,et al.  The completely monotonic character of the Mittag-Leffler function $E_a \left( { - x} \right)$ , 1948 .

[2]  W. Wyss The fractional diffusion equation , 1986 .

[3]  Serge Winitzki,et al.  Uniform Approximations for Transcendental Functions , 2003, ICCSA.

[4]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[5]  Mário N. Berberan-Santos,et al.  Properties of the Mittag-Leffler Relaxation Function , 2005 .

[6]  Rudolf Hilfer,et al.  Computation of the generalized Mittag-Leffler function and its inverse in the complex plane , 2006 .

[7]  A. Mcbride,et al.  Fractional calculus and integral transforms of generalized functions , 1979 .

[8]  Hari M. Srivastava,et al.  Univalent Functions, Fractional Calculus, and Their Applications , 1990, The Mathematical Gazette.

[9]  K. Miller,et al.  An Introduction to the Fractional Calculus and Fractional Differential Equations , 1993 .

[10]  Colin Atkinson,et al.  On stress singularities and interfaces in linear elastic fracture mechanics , 1977 .

[11]  Enrico Scalas,et al.  REVISITING THE DERIVATION OF THE FRACTIONAL DIFFUSION EQUATION , 2003 .

[12]  W. Schneider,et al.  Fractional diffusion and wave equations , 1989 .

[13]  Francesco Mainardi,et al.  Applications of integral transforms in fractional diffusion processes , 2004, 0710.0145.

[14]  Trenton R. Ensley,et al.  Properties of the Mittag-Leffler Function , 2007 .

[15]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[16]  Francesco Mainardi,et al.  Linear models of dissipation in anelastic solids , 1971 .

[17]  M. T. Cicero FRACTIONAL CALCULUS AND WAVES IN LINEAR VISCOELASTICITY , 2012 .

[18]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[19]  I. Podlubny Fractional differential equations , 1998 .

[20]  A. Wiman Über den Fundamentalsatz in der Teorie der FunktionenEa(x) , 1905 .

[21]  Alan D. Freed,et al.  Fractional-order Viscoelasticity (FOV): Constitutive Development Using the Fractional Calculus: First Annual Report , 2002 .

[22]  A. P. Starovoitov,et al.  Padé approximants of the Mittag-Leffler functions , 2007 .

[23]  W. Feller Fluctuation theory of recurrent events , 1949 .

[24]  R. Gorenflo,et al.  Some recent advances in theory and simulation of fractional diffusion processes , 2007, 0801.0146.

[25]  V. Kiryakova Generalized Fractional Calculus and Applications , 1993 .

[26]  F. Mainardi,et al.  The fundamental solution of the space-time fractional diffusion equation , 2007, cond-mat/0702419.

[27]  F. Mainardi The fundamental solutions for the fractional diffusion-wave equation , 1996 .

[28]  R. Gorenflo,et al.  Time-fractional derivatives in relaxation processes: a tutorial survey , 2008, 0801.4914.

[29]  Francesco Mainardi,et al.  The -Wright Function in Time-Fractional Diffusion Processes: A Tutorial Survey , 2010, 1004.2950.