The antiquity of microbial sulfate reduction

The phylogenetic positions of sulfate-reducing organisms, as revealed from comparisons of small-subunit ribosomal RNA (SSU rRNA), are spread over both the Archaeal and Bacterial domains, though when they evolved is uncertain. The low-branching positions of some of these groups on the Tree of Life have inspired the hypothesis that the metabolic innovation of microbial sulfate reduction is of great antiquity. Only recently, however, have sulfur isotope data from Precambrian rocks begun to emerge that clearly demonstrate sulfate-reducing microbes had evolved by the early Archean. The large spread of δ34S values of microscopic pyrites aligned along growth faces of former gypsum crystals in the ∼3.47-Ga North Pole barite deposit of northwestern Australia provide the oldest evidence of microbial sulfate reduction and the earliest indication of a specific microbial metabolism. The distinct expression of microbial sulfate reduction in this localized and cool sulfate-rich environment provides the oldest date for calibrating the temporal progress of early evolution on the Tree of Life.

[1]  M. Böttcher,et al.  Oxygen and sulfur isotope fractionation during anaerobic bacterial disproportionation of elemental sulfur , 2001 .

[2]  L. Barton,et al.  Variations in autotrophic life , 1991 .

[3]  N. Pace A molecular view of microbial diversity and the biosphere. , 1997, Science.

[4]  J. Hayes,et al.  Terminal Proterozoic mid-shelf benthic microbial mats in the Centralian Superbasin and their environmental significance. , 1999, Geochimica et cosmochimica acta.

[5]  B. Jørgensen,et al.  Temperature dependence and rates of sulfate reduction in cold sediments of svalbard, arctic ocean , 1998 .

[6]  B. Jørgensen Mineralization of organic matter in the sea bed—the role of sulphate reduction , 1982, Nature.

[7]  J. William Schopf,et al.  Earth's earliest biosphere : its origin and evolution , 1983 .

[8]  David I. Groves,et al.  Stromatolite recognition in ancient rocks: an appraisal of irregularly laminated structures in an Early Archaean chert-barite unit from North Pole, Western Australia , 1981 .

[9]  John M. Hayes,et al.  Isotopic inferences of ancient biochemistries - Carbon, sulfur, hydrogen, and nitrogen , 1983 .

[10]  A. Lasaga,et al.  Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems , 1982 .

[11]  L. A. Chambers,et al.  Microbiological fractionation of stable sulfur isotopes: A review and critique , 1979 .

[12]  J. Zeyer,et al.  Sulfur isotope fractionation during microbial sulfate reduction by toluene-degrading bacteria , 2001 .

[13]  H. Strauss GEOLOGICAL EVOLUTION FROM ISOTOPE PROXY SIGNALS : SULFUR , 1999 .

[14]  B. Rasmussen,et al.  Filamentous microfossils in a 3,235-million-year-old volcanogenic massive sulphide deposit , 2000, Nature.

[15]  H. Strauss Carbon and sulfur isotopes in Precambrian sediments from the Canadian Shield , 1986 .

[16]  J. Banfield,et al.  Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. , 2000, Science.

[17]  R. Buick,et al.  Redox state of the Archean atmosphere: Evidence from detrital heavy minerals in ca. 3250–2750 Ma sandstones from the Pilbara Craton, Australia , 1999 .

[18]  D. Rickard Kinetics and mechanism of pyrite formation at low temperatures , 1975 .

[19]  S. Nair,et al.  Anaerobic Sulfide-oxidation in marine colorless sulfur-oxidizing bacteria , 1997 .

[20]  M. Rosing,et al.  13C-Depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from west greenland , 1999, Science.

[21]  R Buick,et al.  Archean molecular fossils and the early rise of eukaryotes. , 1999, Science.

[22]  M. Goldhaber,et al.  Mechanisms of sulfur incorporation and isotope fractionation during early diagenesis in sediments of the gulf of California , 1980 .

[23]  R. Buick,et al.  Archean Oil: Evidence for Extensive Hydrocarbon Generation and Migration 2.5-3.5 Ga , 1998 .

[24]  E. M. Cameron Sulphate and sulphate reduction in early Precambrian oceans , 1982 .

[25]  Donald E. Canfield,et al.  Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies , 1996, Nature.

[26]  M. Schidlowski A 3,800-million-year isotopic record of life from carbon in sedimentary rocks , 1988, Nature.

[27]  H. Ohmoto Sulfur and Carbon Isotopes , 1997 .

[28]  B. Jørgensen,et al.  Controls on stable sulfur isotope fractionation during bacterial sulfate reduction in Arctic sediments , 2001 .

[29]  B. Jørgensen A theoretical model of the stable sulfur isotope distribution in marine sediments , 1979 .

[30]  H. Cypionka,et al.  Formation of thiosulfate and trithionate during sulfite reduction by washed cells of Desulfovibrio desulfuricans , 1990, Archives of Microbiology.

[31]  B. Jørgensen,et al.  Influence of water column dynamics on sulfide oxidation and other major biogeochemical processes in the chemocline of Mariager Fjord (Denmark) , 2001 .

[32]  J. Akagi,et al.  Characterization of a trithionate reductase system from Desulfovibrio vulgaris , 1985, Journal of bacteriology.

[33]  J. Etherington,et al.  The nitrogen and sulphur cycles , 1988 .

[34]  F. Widdel,et al.  Microbiology and ecology of sulfate-and sulfur-reducing bacteria , 1988 .

[35]  Larry L. Barton,et al.  Sulfate-Reducing Bacteria , 1995, Biotechnology Handbooks.

[36]  H. Strauss The sulfur isotopic record of Precambrian sulfates: new data and a critical evaluation of the existing record , 1993 .

[37]  H. Krouse,et al.  Neoproterozoic strata of the southern Canadian Cordillera and the isotopic evolution of seawater sulfate , 1995 .

[38]  R. Parkes,et al.  Identifying Different Populations of Sulphate-reducing Bacteria within Marine Sediment Systems, Using Fatty Acid Biomarkers , 1985 .

[39]  J. Odom,et al.  The Sulfate-Reducing Bacteria: Contemporary Perspectives , 1993, Brock/Springer Series in Contemporary Bioscience.

[40]  B. Ian,et al.  The palaeoenvironmental significance of trends in sulphur isotope compositions in the Precambrian; a critical review , 1990 .

[41]  H. Ohmoto Biogeochemistry of Sulfur and the Mechanisms of Sulfide-Sulfate Mineralization in Archean Oceans , 1992 .

[42]  Joseph McCall,et al.  Earth science reviews , 1980 .

[43]  A. Dutkiewicz,et al.  Hydrocarbon Pseudo-Inclusions in Barite: How to Recognize and Avoid Artifacts , 2003 .

[44]  Y. Shieh,et al.  Fractionation of sulfur isotopes during laboratory synthesis of pyrite at low temperatures , 1979 .

[45]  N. McNaughton,et al.  Constraints on the age of the Warrawoona Group, eastern Pilbara Block, Western Australia , 1993 .

[46]  I. H. Öğüş,et al.  NATO ASI Series , 1997 .

[47]  H. Machel Bacterial and thermochemical sulfate reduction in diagenetic settings — old and new insights , 2001 .

[48]  H. Cypionka Novel metabolic capacities of sulfate-reducing bacteria, and their activities in microbial mats , 1994 .

[49]  H. Thode,et al.  Variations in the S33, S34, and S36 contents of meteorites and their relation to chemical and nuclear effects , 1965 .

[50]  L. Hardie,et al.  THE GYPSUM-ANHYDRITE EQUILIBRIUM AT ONE ATMOSPHERE PRESSURE1 , 2007 .

[51]  Thomas Dandekar,et al.  Metabolic Pathways , 1961, Gene Regulations and Metabolism.

[52]  D. Canfield,et al.  Calibration of Sulfate Levels in the Archean Ocean , 2002, Science.

[53]  D. Canfield,et al.  Isotope fractionation by sulfate-reducing natural populations and the isotopic composition of sulfide in marine sediments , 2001 .

[54]  G. Beaudoin,et al.  Variations in the sulfur isotope composition of troilite from the Cañon Diablo iron meteorite , 1994 .

[55]  D. Canfield,et al.  Aerobic sulfate reduction in microbial mats. , 1991, Science.

[56]  R. Amann,et al.  Microbial Community Composition of Wadden Sea Sediments as Revealed by Fluorescence In Situ Hybridization , 1998, Applied and Environmental Microbiology.

[57]  W. Nijman,et al.  Growth fault control of Early Archaean cherts, barite mounds and chert-barite veins, North Pole Dome, Eastern Pilbara, Western Australia , 1998 .

[58]  W. Nijman,et al.  Growth fault control of Early Archaean cherts, barite mounds and chert-barite veins, North Pole Dome, Eastern Pilbara, Western Australia1PII of original article S0301-9268(97)00062-4.1 , 1999 .

[59]  H. Cypionka,et al.  A combined pathway of sulfur compound disproportionation in Desulfovibrio desulfuricans , 1998 .

[60]  L. A. Chambers,et al.  Are thiosulfate and trithionate intermediates in dissimilatory sulfate reduction? , 1975 .

[61]  Donald E. Canfield,et al.  The Archean sulfur cycle and the early history of atmospheric oxygen. , 2000, Science.

[62]  Roger Buick,et al.  Evaporitic sediments of Early Archaean age from the Warrawoona Group, North Pole, Western Australia , 1990 .

[63]  Roger E. Summons,et al.  2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis , 1999, Nature.

[64]  D. Canfield,et al.  The evolution of the sulfur cycle , 1999 .

[65]  M. Schidlowski,et al.  Early Organic Evolution: Implications for Mineral and Energy Resources , 1992 .

[66]  M. Schidlowski,et al.  Sulfur isotope studies in early Archaean sediments from Isua, West Greenland: Implications for the antiquity of bacterial sulfate reduction , 1979 .

[67]  T. Lyons,et al.  Anomalous enrichments of iron monosulfide in euxinic marine sediments and the role of H2S in iron sulfide transformations: Examples from Effingham Inlet, Orca Basin, and the Black Sea , 1999 .

[68]  G. Bock,et al.  Evolution of hydrothermal ecosystems on Earth (and Mars , 1998 .

[69]  K. O. Emery,et al.  The distribution and isotopic abundance of sulphur in recent marine sediments off southern California , 1963 .

[70]  F. Millero,et al.  The products from the oxidation of H2S in seawater , 1993 .

[71]  B. Spiro,et al.  Fractionation of sulfur isotopes during bacterial sulfate reduction in deep ocean sediments at elevated temperatures , 2001 .

[72]  R. Amann,et al.  Community Structure, Cellular rRNA Content, and Activity of Sulfate-Reducing Bacteria in Marine Arctic Sediments , 2000, Applied and Environmental Microbiology.

[73]  D. Canfield,et al.  Sulphur isotope fractionation in modern microbial mats and the evolution of the sulphur cycle , 1996, Nature.

[74]  D. Canfield,et al.  Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments. , 1997, Geochimica et cosmochimica acta.

[75]  K. Stetter Hyperthermophiles in the history of life. , 2007, Ciba Foundation symposium.

[76]  H. Cypionka,et al.  SULFUR ISOTOPE FRACTIONATION DURING EXPERIMENTAL PRECIPITATION OF IRON(II)AND MANGANESE(II) SULFIDE AT ROOM TEMPERATURE , 1998 .

[77]  H. Ohmoto,et al.  Bacterial activity in the warmer, sulphate-bearing, Archaean oceans , 1987, Nature.

[78]  R. Starkey The Biochemistry of Inorganic Compounds of Sulfur , 1971 .

[79]  F. Robert,et al.  Nitrogen isotope ratios of kerogens in Precambrian cherts: a record of the evolution of atmosphere chemistry? , 1999 .

[80]  P. Brimblecombe,et al.  Iron and sulfur in the pre-biologic ocean. , 1985, Precambrian research.

[81]  R. Berner Sedimentary pyrite formation: An update , 1984 .

[82]  R. Summons,et al.  Molecular fossils and microfossils of prokaryotes and protists from Proterozoic sediments , 1990 .

[83]  C. Rees A steady-state model for sulphur isotope fractionation in bacterial reduction processes , 1973 .

[84]  K. Purdy,et al.  Seasonal changes in ribosomal RNA of sulfate-reducing bacteria and sulfate reducing activity in a freshwater lake sediment , 1999 .

[85]  A. Knoll,et al.  The early evolution of eukaryotes: a geological perspective. , 1992, Science.

[86]  R. Berner Sedimentary pyrite formation , 1970 .

[87]  Jillian F. Banfield,et al.  Genomics and the Geosciences , 2000, Science.

[88]  John S. Lewis,et al.  Book Review: The chemical evolution of the atmosphere and oceans. By Heinrich D. Holland. Princeton Univ. Press, Princeton, N.J., 1984. pp., pb 24.50, hb 75.00 , 1985 .

[89]  T. Höpner,et al.  Stable Sulfur Isotope Effects Related to Local Intense Sulfate Reduction in a Tidal Sandflat (Southern North Sea): Results from Loading Experiments , 1997 .

[90]  H. Thode,et al.  Carbon and sulfur isotope abundances in Archean iron-formations and early Precambrian life , 1976 .

[91]  H. Ohmoto,et al.  Origins of pyrites in the ∼2.5 Ga Mt. McRae Shale, the Hamersley District, Western Australia , 1998 .

[92]  J. B. Smith,et al.  Record of emergent continental crust ∼3.5 billion years ago in the Pilbara craton of Australia , 1995, Nature.

[93]  M. Böttcher,et al.  Anaerobic sulfide oxidation and stable isotope fractionation associated with bacterial sulfur disproportionation in the presence of MnO2 , 2001 .

[94]  R. Krouse,et al.  Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope reference materials and V-CDT with a reassessment of the atomic weight of sulfur , 2001 .

[95]  H. Ohmoto,et al.  3.4-Billion-year-old biogenic pyrites from Barberton, South Africa: sulfur isotope evidence. , 1993, Science.

[96]  J. Jansonius,et al.  Palynology : principles and applications , 1997 .

[97]  M. Schidlowski,et al.  Carbon isotope geochemistry of the 3.7 × 109-yr-old Isua sediments, West Greenland: implications for the Archaean carbon and oxygen cycles , 1979 .

[98]  L. A. Chambers,et al.  Are Thiosulfate and Trithionate Intermediates in Dissimilatory Sulfate Reduction? , 1976, Journal of bacteriology.

[99]  D. Oehler,et al.  A reconnaissance study of stable isotope ratios in archaean rocks from the yilgarn block, Western Australia , 1977 .

[100]  J. Kuever,et al.  Diversity of Sulfur Isotope Fractionations by Sulfate-Reducing Prokaryotes , 2001, Applied and Environmental Microbiology.

[101]  B. Jørgensen,et al.  A Thiosulfate Shunt in the Sulfur Cycle of Marine Sediments , 1990, Science.

[102]  K. Kobayashi,et al.  Intermediary formation of trithionate in sulfite reduction by a sulfate-reducing bacterium. , 1969, Journal of biochemistry.

[103]  Linda L. Blackall,et al.  Multiple Lateral Transfers of Dissimilatory Sulfite Reductase Genes between Major Lineages of Sulfate-Reducing Prokaryotes , 2001, Journal of bacteriology.

[104]  H. Thode,et al.  The mechanism of the bacterial reduction of sulphate and of sulphite from isotope fractionation studies , 1968 .

[105]  D. Groves,et al.  An Early Habitat of Life , 1981 .

[106]  L. A. Chambers,et al.  Fractionation of sulfur isotopes by continuous cultures of Desulfovibrio desulfuricans. , 1975, Canadian journal of microbiology.

[107]  D. Stahl,et al.  Phylogeny of Sulfate-Reducing Bacteria and a Perspective for Analyzing Their Natural Communities , 1993 .

[108]  James F. Kasting,et al.  The Rise of Atmospheric Oxygen , 2001, Science.

[109]  J. Schopf,et al.  The Proterozoic Biosphere: The Proterozoic Biosphere , 1992 .

[110]  H. Cypionka,et al.  Oxygen respiration by desulfovibrio species. , 2000, Annual review of microbiology.

[111]  S. Airieau,et al.  Observation of wavelength‐sensitive mass‐independent sulfur isotope effects during SO2 photolysis: Implications for the early atmosphere , 2001 .

[112]  M. Böttcher,et al.  Hypersulfidic deep biosphere indicates extreme sulfur isotope fractionation during single-step microbial sulfate reduction , 2001 .

[113]  D. Groves,et al.  Stable isotopic compositions of early Archaean sulphate deposits of probable evaporitic and volcanogenic origins , 1978, Nature.

[114]  C. Babin The Proterozoïc biosphere. A multidisciplinary study , 1993 .

[115]  Oliver J. Hao,et al.  Sulfate‐reducing bacteria , 1996 .

[116]  Michael Wagner,et al.  Phylogeny of Dissimilatory Sulfite Reductases Supports an Early Origin of Sulfate Respiration , 1998, Journal of bacteriology.

[117]  A. Roy,et al.  The Biochemistry of Inorganic Compounds of Sulphur , 1970 .

[118]  B. Fry,et al.  Stable sulphur isotopes in plants: a review , 1992 .

[119]  B. Jørgensen,et al.  Bacterial Sulfate Reduction Above 100{degrees}C in Deep-Sea Hydrothermal Vent Sediments. , 1992, Science.

[120]  E. R. Allen,et al.  The Sulfur Cycle , 1972, Science.

[121]  H. Barnes,et al.  Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species , 1996 .

[122]  S. Bengtson Early life on earth , 1994 .

[123]  George W. Luther,et al.  Kinetics of pyrite formation by the H2S oxidation of iron (II) monosulfide in aqueous solutions between 25 and 125°C: The rate equation , 1997 .

[124]  A. G. Harrison,et al.  Mechanism of the bacterial reduction of sulphate from isotope fractionation studies , 1958 .

[125]  D. Canfield Biogeochemistry of Sulfur Isotopes , 2001 .

[126]  R. Sassen,et al.  Products and distinguishing criteria of bacterial and thermochemical sulfate reduction , 1995 .

[127]  D. Davis,et al.  UPb zircon geochronology of Archaean felsic units in the Marble Bar region, Pilbara Craton, Western Australia , 1992 .

[128]  Hans W. Paerl,et al.  Nitrogen, Carbon, and Sulfur Metabolism in NaturalThioploca Samples , 1999, Applied and Environmental Microbiology.

[129]  K. Stetter,et al.  Pyrite formation linked with hydrogen evolution under anaerobic conditions , 1990, Nature.

[130]  H. M. Brown,et al.  Sulphur gas emissions in the Boreal Forest: The West Whitecourt case study V. Stable sulphur isotopes , 1984 .

[131]  H. D. Holland When did the Earth's atmosphere become oxic? A Reply , 1999 .

[132]  D. Groves,et al.  Palaeoenvironmental significance of rounded pyrite in siliciclastic sequences of the Late Archaean Witwatersrand Basin: oxygen‐deficient atmosphere or hydrothermal alteration? , 2002 .

[133]  H. Cypionka Solute Transport and Cell Energetics , 1995 .

[134]  D. Gerneke,et al.  Early Archean fossil bacteria and biofilms in hydrothermally-influenced sediments from the Barberton greenstone belt, South Africa , 2001 .

[135]  R. Y. Morita,et al.  Bioavailability of energy and its relationship to growth and starvation survival in nature , 1988 .

[136]  K. Schleifer,et al.  The dissimilatory sulfate- and sulfur-reducing bacteria. , 1992 .

[137]  Harald Strauss,et al.  Carbon and sulfur isotopic compositions of organic carbon and pyrite in sediments from the Transvaal Supergroup, South Africa , 1996 .

[138]  E. M. Cameron,et al.  Archean gold mineralization and oxidized hydrothermal fluids , 1987 .

[139]  G. W. Skyring,et al.  Sulfate reduction in coastal ecosystems , 1987 .

[140]  H. Cypionka,et al.  A novel type of energy metabolism involving fermentation of inorganic sulphur compounds , 1987, Nature.

[141]  L. Siegel CHAPTER 7 – Biochemistry of the Sulfur Cycle , 1975 .

[142]  M. Thiemens,et al.  Atmospheric influence of Earth's earliest sulfur cycle , 2000, Science.

[143]  K. Finster,et al.  Bacterial Disproportionation of Elemental Sulfur Coupled to Chemical Reduction of Iron or Manganese , 1993, Applied and environmental microbiology.

[144]  A. Paytan Sulfate Clues for the Early History of Atmospheric Oxygen , 2000, Science.

[145]  D. Canfield Isotope fractionation by natural populations of sulfate-reducing bacteria , 2001 .

[146]  N. Sleep,et al.  The habitat and nature of early life , 2001, Nature.

[147]  A. Ogram,et al.  Phylogeny of sulfate‐reducing bacteria , 2000 .

[148]  D. Canfield,et al.  Sulfur isotope fractionation during bacterial reduction and disproportionation of thiosulfate and sulfite , 1998 .

[149]  A. Knoll A New Molecular Window on Early Life , 1999, Science.

[150]  S. Rittenberg,et al.  MICROBIOLOGICAL FRACTIONATION OF SULPHUR ISOTOPES. , 1964, Journal of general microbiology.

[151]  D. Canfield,et al.  The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. , 1994, Science.

[152]  N. Grassineau,et al.  Antiquity of the biological sulphur cycle: evidence from sulphur and carbon isotopes in 2700 million–year–old rocks of the Belingwe Belt, Zimbabwe , 2001, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[153]  Donald E. Canfield,et al.  Isotopic evidence for microbial sulphate reduction in the early Archaean era , 2001, Nature.

[154]  R. Buick The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulphate-deficient Archaean lakes. , 1992, Science.

[155]  H. Barnes,et al.  Geochemistry of Hydrothermal Ore Deposits , 1968 .