Rheological properties and chemical analysis of nanoclay and carbon microfiber modified asphalt with Fourier transform infrared spectroscopy

Abstract This work aims to improve the rutting and fatigue cracking resistance of asphalt binders using selected nano- or micro-sized materials and to shed light on the microstructure changes induced by such modification to asphalt binders. The four modifiers (Nanomer I.44P, carbon microfiber, non-modified nanoclay and polymer modified nanoclay) were added into the control asphalt binder (PG 58-34). The Superpave™ tests and Fourier transform infrared spectroscopy (FTIR) measurements were conducted for obtaining the complex shear modulus G * and microstructure distribution of modified asphalt binders. Meanwhile, the short-term and long-term aging processes of asphalt binders are simulated by rolling thin film oven (RTFO) and pressure aging vessel (PAV) tests. From the dynamic shear rheometer (DSR) and FTIR tests results, the complex shear modulus G * values of nano- or micro-materials (Nanomer I.44P, non-modified nanoclay and carbon microfiber) modified asphalt binders increase, and the performance of resistance to rutting is improved compared to the control asphalt binder. The addition of polymer modified nanoclay (PMN) into the control asphalt binder decreases the complex shear modulus, and enhances the resistance to fatigue cracking. Moreover, the addition of four modifiers into the control asphalt binder can delay and weaken the aging and oxidation effect.

[1]  A. Veeraragavan,et al.  Laboratory Evaluation of SBS Modified Bituminous Paving Mix , 2008 .

[2]  Peter R. Griffiths,et al.  Comprar Fourier Transform Infrared Spectrometry | James D. Winefordner | 9780471194040 | Wiley , 2007 .

[3]  Shaopeng Wu,et al.  Influence of aging on the evolution of structure, morphology and rheology of base and SBS modified bitumen , 2009 .

[4]  Man Xi,et al.  The effect of styrene–butadiene–rubber/montmorillonite modification on the characteristics and properties of asphalt , 2009 .

[5]  S. M. Abtahi,et al.  Fiber-reinforced asphalt-concrete – A review , 2010 .

[6]  Ali Khodaii,et al.  Effects of nanoclay on rheological properties of bitumen binder , 2009 .

[7]  Mohammad Jamal Khattak,et al.  Fatigue and Permanent Deformation Models for Polymer-Modified Asphalt Mixtures , 2001 .

[8]  Xianming Shi,et al.  Surface-sulfonated polystyrene microspheres improve crack resistance of carbon microfiber-reinforced Portland cement mortar , 2010 .

[9]  Xianming Shi,et al.  Chloride Permeability and Microstructure of Portland Cement Mortars Incorporating Nanomaterials , 2008 .

[10]  Diego O. Larsen,et al.  Micro-structural and rheological characteristics of SBS-asphalt blends during their manufacturing , 2009 .

[11]  Serji N. Amirkhanian,et al.  Analysis of unbalanced binder oxidation level in recycled asphalt mixture using GPC , 2008 .

[12]  D. Ghile Effects of Nanoclay Modification on Rheology of Bitumen and on Performance of Asphalt Mixtures , 2006 .

[13]  Animesh Das,et al.  Flexural Fatigue Characteristics of Asphalt Concrete with Crumb Rubber , 2000 .

[14]  A Toepel,et al.  TIRE RUBBER IN HOT MIX ASPHALT PAVEMENTS , 2004 .

[15]  Kosta J. Leontaritis,et al.  Asphaltene deposition: a survey of field experiences and research approaches , 1988 .

[16]  Armen N. Amirkhanian,et al.  Influence of Carbon Nanoparticles on the Rheological Characteristics of Short-Term Aged Asphalt Binders , 2011 .

[17]  Ning Li,et al.  Investigation of the dynamic and fatigue properties of fiber-modified asphalt mixtures , 2009 .

[18]  M. Aren Cleven,et al.  INVESTIGATION OF THE PROPERTIES OF CARBON FIBER MODIFIED ASPHALT MIXTURES , 2000 .

[19]  Tan Yi-qiu,et al.  Comparative Performance of the SMAC Made with the SBS- and ST-Modified Binders , 2010 .

[20]  G. Ali Mansoori,et al.  Asphaltene flocculation and collapse from petroleum fluids , 2001 .

[21]  Boming Tang,et al.  Influence of surface area and size of crumb rubber on high temperature properties of crumb rubber modified binders , 2009 .

[22]  B. B. Pandey,et al.  Laboratory evaluation of crumb rubber modified asphalt mixes , 2004 .

[23]  H. Bianchetto,et al.  Effect of the thermal degradation of SBS copolymers during the ageing of modified asphalts , 2004 .

[24]  Jun Han,et al.  Effects of thermal oxidative ageing on dynamic viscosity, TG/DTG, DTA and FTIR of SBS- and SBS/sulfur-modified asphalts , 2011 .

[25]  Shaopeng Wu,et al.  Effect of organo-montmorillonite on aging properties of asphalt , 2009 .

[26]  Richard R. Davison,et al.  The effect of long-term oxidation on the rheological properties of polymer modified asphalts☆ , 2003 .

[27]  U. Johansson,et al.  POLYMER MODIFIED ASPHALT BINDERS , 1991 .

[28]  Qingli Dai,et al.  Nanoclay-modified asphalt materials: Preparation and characterization , 2011 .

[29]  Hussain U Bahia,et al.  Advanced Characterization of Crumb Rubber-Modified Asphalts, Using Protocols Developed for Complex Binders , 2001 .

[30]  Xianming Shi,et al.  Effect of deicing solutions on the tensile strength of micro- or nano-modified asphalt mixture , 2011 .

[31]  N. N. Greenwood,et al.  Chemistry of the elements , 1984 .

[32]  Yong Zhang,et al.  Improving the aging resistance of asphalt by addition of Zinc dialkyldithiophosphate , 2006 .

[33]  Hussain U Bahia,et al.  Use of Superpave Technology for Design and Construction of Rubberized Asphalt Mixtures , 1997 .

[34]  Yiqiu Tan,et al.  Mechanistic analysis of ST and SBS-modified flexible pavements , 2009 .

[35]  S. M. Marandi,et al.  Modification of Stone Matrix Asphalt with Nano-SiO2 , 2012 .

[36]  Shu-tang Liu,et al.  Variance analysis and performance evaluation of different crumb rubber modified (CRM) asphalt , 2009 .

[37]  P. Griffiths Fourier Transform Infrared Spectrometry , 2007 .

[38]  Toshiro Kamada,et al.  Fracture Toughness of Microfiber Reinforced Cement Composites , 2002 .

[39]  B. Birgisson,et al.  DEVELOPMENT AND FIELD EVALUATION OF ENERGY-BASED CRITERIA FOR TOP-DOWN CRACKING PERFORMANCE OF HOT MIX ASPHALT (WITH DISCUSSION) , 2004 .

[40]  Tao Xu,et al.  A TG-FTIR investigation into smoke suppression mechanism of magnesium hydroxide in asphalt combustion process , 2010 .

[41]  Shaopeng Wu,et al.  Study on the graphite and carbon fiber modified asphalt concrete , 2011 .

[42]  Jianchuan Cheng,et al.  Moisture Susceptibility of Warm-Mix Asphalt Mixtures Containing Nanosized Hydrated Lime , 2011 .

[43]  Zhanping You,et al.  Performance of asphalt binder blended with non-modified and polymer-modified nanoclay , 2012 .

[44]  Xiaoming Huang,et al.  Study on combustion mechanism of asphalt binder by using TG-FTIR technique , 2010 .

[45]  Saeed Ghaffarpour Jahromi,et al.  ENGINEERING PROPERTIES OF NANOCLAY MODIFIED ASPHALT CONCRETE MIXTURES , 2010 .

[46]  Jiong Hu,et al.  Aging analysis of rubberized asphalt binders and mixes using gel permeation chromatography , 2011 .

[47]  M. Nowakowska,et al.  Novel hybrid photosensitizers: Photoactive polymer–nanoclay , 2010 .

[48]  M. Khattak,et al.  Mechanistic Characteristics of Asphalt Binder and Asphalt Matrix Modified with Nano-Fibers , 2011 .

[49]  U. Isacsson,et al.  Chemical characterization of oil-based asphalt release agents and their emissions , 2006 .

[50]  Li Xiang,et al.  Microstructure and performance of crumb rubber modified asphalt , 2009 .

[51]  G. Ali Mansoori,et al.  Modeling of asphaltene and other heavy organic depositions , 1997 .

[52]  S. Amirkhanian,et al.  Effect of crumb rubber characteristics on crumb rubber modified (CRM) binder viscosity , 2009 .

[53]  Feng Zhang,et al.  The research for high-performance SBR compound modified asphalt , 2010 .