Maximum sensitivity to update schedules of elementary cellular automata over infinite configurations
暂无分享,去创建一个
[1] Kévin Perrot,et al. Characterisation of the elementary cellular automata in terms of their maximum sensitivity to all possible asynchronous updates , 2018 .
[2] Jarkko Kari,et al. Theory of cellular automata: A survey , 2005, Theor. Comput. Sci..
[3] Kévin Perrot,et al. Maximum sensitivity to update schedules of elementary cellular automata over periodic configurations , 2019, Natural Computing.
[4] B A Huberman,et al. Evolutionary games and computer simulations. , 1993, Proceedings of the National Academy of Sciences of the United States of America.
[5] Alberto Dennunzio. From One-dimensional to Two-dimensional Cellular Automata , 2012, Fundam. Informaticae.
[6] Giancarlo Mauri,et al. Computational complexity of finite asynchronous cellular automata , 2017, Theor. Comput. Sci..
[7] Eric Goles,et al. Deconstruction and Dynamical Robustness of Regulatory Networks: Application to the Yeast Cell Cycle Networks , 2013, Bulletin of mathematical biology.
[8] Eric Goles Ch.,et al. On the robustness of update schedules in Boolean networks , 2009, Biosyst..
[9] Susanna M. Messinger,et al. Task-performing dynamics in irregular, biomimetic networks , 2007, Complex..
[10] Giancarlo Mauri,et al. A study on learning robustness using asynchronous 1D cellular automata rules , 2012, Natural Computing.
[11] Nazim Fatès,et al. A Guided Tour of Asynchronous Cellular Automata , 2013, J. Cell. Autom..
[12] Michael Vielhaber. Computation of functions on n bits by asynchronous clocking of cellular automata , 2013, Natural Computing.
[13] Kévin Perrot,et al. Sensitivity to synchronism in some boolean automata networks , 2017 .
[14] Julio Aracena,et al. Combinatorics on update digraphs in Boolean networks , 2011, Discret. Appl. Math..