Surfaces with flat normal bundle: an explicit construction

[1]  U. Pinkall,et al.  Integrable deformations of affine surfaces via the Nizhnik-Veselov-Novikov equation , 1998 .

[2]  E. Ferapontov Surfaces in Lie sphere geometry and the stationary Davey-Stewartson hierarchy , 1997, dg-ga/9710028.

[3]  Yongfan Zheng Submanifolds with Flat Normal Bundle , 1997 .

[4]  Wolfgang K. Schief,et al.  On the geometry of an integrable (2+1)–dimensional sine–Gordon system , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  I. Taimanov Surfaces of Revolution in Terms of Solitons , 1996, dg-ga/9610013.

[6]  Boris Konopelchenko,et al.  Induced Surfaces and Their Integrable Dynamics , 1996 .

[7]  E. Ferapontov Isoparametric hypersurfaces in spheres, integrable nondiagonalizable systems of hydrodynamic type, and N-wave systems , 1995 .

[8]  I. Taimanov Modified Novikov--Veselov equation and differential geometry of surfaces , 1995, dg-ga/9511005.

[9]  E. Ferapontov Dupin hypersurfaces and integrable hamiltonian systems of hydrodynamic type, which do not possess Riemann invariants , 1995 .

[10]  E. V. Ferapontov,et al.  Hamiltonian systems of hydrodynamic type and their realization on hypersurfaces of a pseudo-Euclidean space , 1991 .

[11]  S. P. Tsarëv THE GEOMETRY OF HAMILTONIAN SYSTEMS OF HYDRODYNAMIC TYPE. THE GENERALIZED HODOGRAPH METHOD , 1991 .

[12]  B. Konopelchenko SOLITON EIGENFUNCTION EQUATIONS: THE IST INTEGRABILITY AND SOME PROPERTIES , 1990 .

[13]  B. Palmer Isothermic surfaces and the Gauss map , 1988 .

[14]  C. Terng Isoparametric submanifolds and their Coxeter groups , 1985 .

[15]  Yu. G. Lumiste,et al.  Normal connection and submanifolds with parallel normal fields in a space of constant curvature , 1983 .

[16]  C. Terng,et al.  Bäcklund's Theorem for n-Dimensional Submanifolds of R 2n - 1 , 1980 .

[17]  C. Terng A Higher Dimension Generalization of the Sine-Gordon Equation and its Soliton Theory , 1980 .

[18]  H. R. Green Theory of Congruences , 1961 .

[19]  Luther Pfahler Eisenhart,et al.  Transformations of surfaces , 1934, The Mathematical Gazette.

[20]  E. Cartan,et al.  Leçons sur la géométrie des espaces de Riemann , 1928 .

[21]  E. Cartan Sur les variétés de courbure constante d'un espace euclidien ou non-euclidien , 1919 .

[22]  G. Darboux Leçons sur les systémes orthogonaux et les coordonnées curvilignes , 1910 .

[23]  L. Bianchi Vorlesungen über Differentialgeometrie I , 1899 .

[24]  S. Lie Ueber Complexe, insbesondere Linien- und Kugel-Complexe, mit Anwendung auf die Theorie partieller Differential-Gleichungen , 1872 .