A three-dimensional numerical model for dense granular flows based on the µ(I) rheology

This paper presents a three-dimensional implementation of the so-called µ ( I ) rheology to accurately and efficiently compute steady-state dense granular flows. The tricky pressure dependent visco-plastic behaviour within an incompressible flow solver has been overcome using a regularisation technique along with a complete derivation of the incremental formulation associated with the Newton-Raphson algorithm. The computational accuracy and efficiency of the proposed numerical model have been assessed on two representative problems that have an analytical solution. Then, two application examples dealing with actual lab experiments have also been considered: the first one concerns a granular flow on a heap and the second one deals with the granular flow around a cylinder. In both configurations the obtained computational results are in good agreement with available experimental data.

[1]  Y. Forterre,et al.  Flows of Dense Granular Media , 2008 .

[2]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[3]  Roberto Zenit,et al.  Dense granular flow around an immersed cylinder , 2003 .

[4]  Nikolaos A. Malamataris,et al.  A new outflow boundary condition , 1992 .

[5]  T. Papanastasiou Flows of Materials with Yield , 1987 .

[6]  Olivier Pouliquen,et al.  SCALING LAWS IN GRANULAR FLOWS DOWN ROUGH INCLINED PLANES , 1999 .

[7]  I. Frigaard,et al.  On the usage of viscosity regularisation methods for visco-plastic fluid flow computation , 2005 .

[8]  Crucial role of sidewalls in granular surface flows: consequences for the rheology , 2005, Journal of Fluid Mechanics.

[9]  S. Popinet,et al.  The granular silo as a continuum plastic flow: The hour-glass vs the clepsydra , 2012, 1211.5916.

[10]  Michel Bercovier,et al.  A finite-element method for incompressible non-Newtonian flows , 1980 .

[11]  Jean-Noël Roux,et al.  Rheophysics of dense granular materials: discrete simulation of plane shear flows. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Patrick R. Amestoy,et al.  Multifrontal parallel distributed symmetric and unsymmetric solvers , 2000 .

[13]  P. G. de Gennes,et al.  Reflections on the mechanics of granular matter , 1998 .

[14]  Marc Medale,et al.  A parallel computer implementation of the Asymptotic Numerical Method to study thermal convection instabilities , 2009, J. Comput. Phys..

[15]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[16]  Aka Fulgence Nindjin Amelioration de la convergence et superconvergence des methodes d'elements finis mixtes pour les equations de navier-stokes , 1988 .

[17]  Pierre Jop Ecoulements granulaires sur fond meuble , 2006 .

[18]  Pierre-Yves Lagrée,et al.  The granular column collapse as a continuum: validity of a two-dimensional Navier–Stokes model with a μ(I)-rheology , 2011, Journal of Fluid Mechanics.

[19]  G. Midi,et al.  On dense granular flows , 2003, The European physical journal. E, Soft matter.

[20]  Olivier Pironneau Méthodes des éléments finis pour les fluides , 1989 .

[21]  M. Medale,et al.  A three-dimensional numerical model for incompressible two-phase flow of a granular bed submitted to a laminar shearing flow , 2010 .

[22]  Patrick Amestoy,et al.  Hybrid scheduling for the parallel solution of linear systems , 2006, Parallel Comput..

[23]  Kapiza waves as a test for three-dimensional granular flow rheology , 2006, Journal of Fluid Mechanics.

[24]  Olivier Pouliquen,et al.  A constitutive law for dense granular flows , 2006, Nature.

[25]  H. Jaeger,et al.  Granular solids, liquids, and gases , 1996 .

[26]  Marc Medale,et al.  Power series analysis as a major breakthrough to improve the efficiency of Asymptotic Numerical Method in the vicinity of bifurcations , 2013, J. Comput. Phys..

[27]  Gary R. Consolazio,et al.  Finite Elements , 2007, Handbook of Dynamic System Modeling.

[28]  Michael E. Papka,et al.  The web page , 2000 .