Short PCPPs verifiable in polylogarithmic time with O(1) queries

In this paper we show for every pair language $L\subseteq \{0,1\}^*\times\{0,1\}^*$ in ${\ensuremath{\mathsf{NTIME}}}(T)$ for some non-decreasing function $T:{{\mathbb Z}}^+\rightarrow {{\mathbb Z}}^+$ there is a ${\ensuremath{\mathsf{PCPP}}}$-verifier such that the following holds. In time poly (|x|,log|y|,logT(|x| + |y|)) it decides the membership of a purported word (x,y) by reading the explicit input x entirely and querying the implicit input y and the auxiliary proof of length T(|x| + |y|)·poly log T(|x| + |y|) in a constant number of positions.

[1]  Luca Trevisan,et al.  Gadgets, approximation, and linear programming , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[2]  Carsten Lund,et al.  Proof verification and hardness of approximation problems , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[3]  Eli Ben-Sasson,et al.  Short PCPs with Polylog Query Complexity , 2008, SIAM J. Comput..

[4]  Leonid A. Levin,et al.  Checking computations in polylogarithmic time , 1991, STOC '91.

[5]  Avi Wigderson,et al.  Entropy waves, the zig-zag graph product, and new constant-degree expanders and extractors , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[6]  Irit Dinur,et al.  The PCP theorem by gap amplification , 2006, STOC.

[7]  László Lovász,et al.  Interactive proofs and the hardness of approximating cliques , 1996, JACM.

[8]  Omer Reingold,et al.  Assignment Testers: Towards a Combinatorial Proof of the PCP-Theorem , 2004, FOCS.

[9]  Eli Ben-Sasson,et al.  Short PCPs verifiable in polylogarithmic time , 2005, 20th Annual IEEE Conference on Computational Complexity (CCC'05).

[10]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[11]  Sanjeev Arora,et al.  Probabilistic checking of proofs: a new characterization of NP , 1998, JACM.

[12]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[13]  Daniel A. Spielman,et al.  Nearly-linear size holographic proofs , 1994, STOC '94.

[14]  Oded Goldreich,et al.  Universal arguments and their applications , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.

[15]  Carsten Lund,et al.  Proof verification and the hardness of approximation problems , 1998, JACM.