Proximity-induced superconductivity in epitaxial topological insulator/graphene/gallium heterostructures

[1]  K. W. Kim,et al.  Scalable Characterization of 2D Gallium-Intercalated Epitaxial Graphene. , 2021, ACS applied materials & interfaces.

[2]  M. Gilbert,et al.  Competing Energy Scales in Topological Superconducting Heterostructures , 2020, Nano letters.

[3]  M. Manfra,et al.  Topological superconductivity in hybrid devices , 2020 .

[4]  Kenji Watanabe,et al.  Superconducting proximity effect in a transparent van der Waals superconductor-metal junction , 2020, 2005.02314.

[5]  A. Bostwick,et al.  Atomically thin half-van der Waals metals enabled by confinement heteroepitaxy , 2020, Nature Materials.

[6]  Kenji Watanabe,et al.  Electrode-Free Anodic Oxidation Nanolithography of Low-Dimensional Materials. , 2018, Nano letters.

[7]  H. Steinberg,et al.  Tunneling into the Vortex State of NbSe2 with van der Waals Junctions. , 2018, Nano letters.

[8]  C. Zeng,et al.  Two-step growth of high-quality Nb/(Bi_0.5Sb_0.5)_2Te_3/Nb heterostructures for topological Josephson junctions , 2018, Journal of Materials Research.

[9]  J. Eckstein,et al.  Superconducting pairing of topological surface states in bismuth selenide films on niobium , 2018, Science Advances.

[10]  Xin Lu,et al.  Spectroscopic evidence for two-gap superconductivity in the quasi-1D chalcogenide Nb2Pd0.81S5 , 2018, Journal of physics. Condensed matter : an Institute of Physics journal.

[11]  V. Yakovenko,et al.  Anomalous Low-Temperature Enhancement of Supercurrent in Topological-Insulator Nanoribbon Josephson Junctions: Evidence for Low-Energy Andreev Bound States. , 2017, Physical review letters.

[12]  T. Michely,et al.  Charge puddles in the bulk and on the surface of the topological insulator BiSbTeSe$_2$ studied by scanning tunneling microscopy and optical spectroscopy , 2017, 1708.09166.

[13]  E. Talantsev,et al.  Universal scaling of the self-field critical current in superconductors: from sub-nanometre to millimetre size , 2017, Scientific Reports.

[14]  R. Sankar,et al.  Proximity-effect-induced Superconducting Gap in Topological Surface States – A Point Contact Spectroscopy Study of NbSe2/Bi2Se3 Superconductor-Topological Insulator Heterostructures , 2017, Scientific Reports.

[15]  J. A. Logan,et al.  Epitaxy of advanced nanowire quantum devices , 2017, Nature.

[16]  Kenji Watanabe,et al.  Tunnelling spectroscopy of Andreev states in graphene , 2016, Nature Physics.

[17]  L. Fu,et al.  Majorana Zero Mode Detected with Spin Selective Andreev Reflection in the Vortex of a Topological Superconductor. , 2016, Physical review letters.

[18]  J. Moodera,et al.  Band structure of topological insulators from noise measurements in tunnel junctions , 2015, 1601.00619.

[19]  Younghyun Kim,et al.  Two-dimensional epitaxial superconductor-semiconductor heterostructures: A platform for topological superconducting networks , 2015, 1511.01127.

[20]  W. Duan,et al.  Band Engineering of Dirac Surface States in Topological-Insulator-Based van der Waals Heterostructures. , 2015, Physical review letters.

[21]  Fu-Chun Zhang,et al.  Experimental detection of a Majorana mode in the core of a magnetic vortex inside a topological insulator-superconductor Bi(2)Te(3)/NbSe(2) heterostructure. , 2015, Physical review letters.

[22]  Su-Yang Xu,et al.  Momentum-space imaging of Cooper pairing in a half-Dirac-gas topological superconductor , 2014, Nature Physics.

[23]  Fu-Chun Zhang,et al.  Artificial Topological Superconductor by the Proximity Effect , 2014 .

[24]  S. Vieira,et al.  Imaging superconducting vortex cores and lattices with a scanning tunneling microscope , 2014, 1403.5514.

[25]  Y. Hor,et al.  Evidence for an anomalous current–phase relation in topological insulator Josephson junctions , 2013, Nature Communications.

[26]  E. Bakkers,et al.  Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices , 2012, Science.

[27]  D. Goldhaber-Gordon,et al.  Unconventional Josephson effect in hybrid superconductor-topological insulator devices. , 2012, Physical review letters.

[28]  Jason Alicea,et al.  New directions in the pursuit of Majorana fermions in solid state systems , 2012, Reports on progress in physics. Physical Society.

[29]  Q. Xue,et al.  The Coexistence of Superconductivity and Topological Order in the Bi2Se3 Thin Films , 2011, Science.

[30]  C. Beenakker,et al.  Search for Majorana Fermions in Superconductors , 2011, 1112.1950.

[31]  Q. Xue,et al.  Band structure engineering in (Bi(1-x)Sb(x))(2)Te(3) ternary topological insulators. , 2011, Nature communications.

[32]  Q. Xue,et al.  Topological insulator Bi2Se3 thin films grown on double-layer graphene by molecular beam epitaxy , 2010, 1007.0809.

[33]  G. Refael,et al.  Helical liquids and Majorana bound states in quantum wires. , 2010, Physical review letters.

[34]  S. Das Sarma,et al.  Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. , 2010, Physical review letters.

[35]  R. Gonnelli,et al.  Probing multiband superconductivity by point-contact spectroscopy , 2009, 0912.4858.

[36]  L. Fu,et al.  Superconducting proximity effect and majorana fermions at the surface of a topological insulator. , 2007, Physical review letters.

[37]  A. Kitaev,et al.  Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[38]  T. M. Klapwijk,et al.  Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion , 1982 .

[39]  M. Cyrot,et al.  Ginzburg-Landau theory for superconductors , 1973 .

[40]  J. Cochran,et al.  SUPERCONDUCTING TRANSITION AND CRITICAL FIELD OF PURE GALLIUM SINGLE CRYSTALS , 1966 .

[41]  J. Robinson,et al.  2-dimensional polar metals: a low-frequency Raman scattering study , 2021 .