Clinical Diagnosis Based on Bayesian Classification of Functional Magnetic-Resonance Data

We describe a method for classifying subjects based on functional magnetic-resonance (fMR) data, using a method combining a Bayesian-network classifier with inverse-tree structure (BNCIT), and ensemble learning. The central challenge is to generate a classifier from a small sample of high-dimensional data. The principal strengths of our method include the nonparametric multivariate Bayesian-network representation, and joint performance of feature selection and classification. Preliminary results indicate that this method can detect regions characterizing group differences, and can, on the basis of activation levels in these regions, accurately classify new subjects.

[1]  Jonathan D. Cohen,et al.  Reproducibility of fMRI Results across Four Institutions Using a Spatial Working Memory Task , 1998, NeuroImage.

[2]  Fillia Makedon,et al.  Patient Classification of fMRI Activation Maps , 2003, MICCAI.

[3]  Rong Chen,et al.  Graphical-model-based multivariate analysis of functional magnetic-resonance data , 2007, NeuroImage.

[4]  Terry M. Peters,et al.  3D statistical neuroanatomical models from 305 MRI volumes , 1993, 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference.

[5]  S. Strother,et al.  Reproducibility of BOLD‐based functional MRI obtained at 4 T , 1999, Human brain mapping.

[6]  J. Morris The Clinical Dementia Rating (CDR) , 1993, Neurology.

[7]  Daphne Koller,et al.  Toward Optimal Feature Selection , 1996, ICML.

[8]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[9]  Rong Chen,et al.  Graphical-model-based morphometric analysis , 2005, IEEE Transactions on Medical Imaging.

[10]  M. D’Esposito,et al.  The Effect of Normal Aging on the Coupling of Neural Activity to the Bold Hemodynamic Response , 1999, NeuroImage.

[11]  Lei Zhang,et al.  Machine learning for clinical diagnosis from functional magnetic resonance imaging , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[12]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[13]  Rong Chen,et al.  A Bayesian network classifier with inverse tree structure for voxelwise magnetic resonance image analysis , 2005, KDD '05.

[14]  Edward H. Herskovits,et al.  Computer-based probabilistic-network construction , 1992 .

[15]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[16]  Stuart J. Russell,et al.  Adaptive Probabilistic Networks with Hidden Variables , 1997, Machine Learning.

[17]  Ron Kohavi,et al.  Wrappers for Feature Subset Selection , 1997, Artif. Intell..

[18]  A R McIntosh,et al.  Functional interactions between the medial temporal lobes and posterior neocortex related to episodic memory retrieval. , 1998, Cerebral cortex.

[19]  Leslie G. Ungerleider,et al.  Network analysis of cortical visual pathways mapped with PET , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[21]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[22]  J. Morris,et al.  Functional Brain Imaging of Young, Nondemented, and Demented Older Adults , 2000, Journal of Cognitive Neuroscience.

[23]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[24]  Nir Friedman,et al.  Bayesian Network Classifiers , 1997, Machine Learning.

[25]  David Maxwell Chickering,et al.  Learning Bayesian Networks: The Combination of Knowledge and Statistical Data , 1994, Machine Learning.

[26]  Gregory F. Cooper,et al.  A Bayesian Method for the Induction of Probabilistic Networks from Data , 1992 .

[27]  Karl J. Friston Functional and effective connectivity in neuroimaging: A synthesis , 1994 .

[28]  Bo Thiesson,et al.  Accelerated Quantification of Bayesian Networks with Incomplete Data , 1995, KDD.