An 8/13-approximation algorithm for the asymmetric maximum TSP

We present a polynomial time approximation algorithm for the asymmetric maximum traveling salesperson problem that achieves performance ratio 8/13(1 - 1/<i>n</i>). The running time of our algorithm is <i>O</i>(<i>n<sup>3</sup></i>).

[1]  Joseph F. Traub,et al.  Algorithms and Complexity: New Directions and Recent Results , 1976 .

[2]  Moshe Lewenstein,et al.  Approximating asymmetric maximum TSP , 2003, SODA '03.

[3]  Refael Hassin,et al.  A 7/8-approximation algorithm for metric Max TSP , 2001, Inf. Process. Lett..

[4]  Clifford Stein,et al.  Long Tours and Short Superstrings (Preliminary Version) , 1994, FOCS 1994.

[5]  Bodo Manthey,et al.  Computing Cycle Covers without Short Cycles , 2001, ESA.

[6]  Eugene L. Lawler,et al.  Traveling Salesman Problem , 2016 .

[7]  Clifford Stein,et al.  Long tours and short superstrings , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[8]  Alan M. Frieze,et al.  On the worst-case performance of some algorithms for the asymmetric traveling salesman problem , 1982, Networks.

[9]  Elizabeth Sweedyk,et al.  A 2½-Approximation Algorithm for Shortest Superstring , 1999, SIAM J. Comput..

[10]  Refael Hassin,et al.  An Approximation Algorithm for the Maximum Traveling Salesman Problem , 1998, Inf. Process. Lett..

[11]  Laurence A. Wolsey,et al.  An Analysis of Approximations for Finding a Maximum Weight Hamiltonian Circuit , 1979, Oper. Res..

[12]  Refael Hassin,et al.  A 7/8-approximation algorithm for metric Max TSP , 2002, Inf. Process. Lett..

[13]  Mihalis Yannakakis,et al.  The Traveling Salesman Problem with Distances One and Two , 1993, Math. Oper. Res..

[14]  Refael Hassin,et al.  Better approximations for max TSP , 2000, Inf. Process. Lett..

[15]  Giorgio Gambosi,et al.  Complexity and Approximation , 1999, Springer Berlin Heidelberg.

[16]  Jonathan S. Turner,et al.  Approximation Algorithms for the Shortest Common Superstring Problem , 1989, Inf. Comput..

[17]  Giorgio Gambosi,et al.  Complexity and approximation: combinatorial optimization problems and their approximability properties , 1999 .

[18]  Marek Karpinski,et al.  Approximation Hardness of TSP with Bounded Metrics , 2001, ICALP.

[19]  Tao Jiang,et al.  Rotations of Periodic Strings and Short Superstrings , 1996, J. Algorithms.

[20]  Nicos Christofides Worst-Case Analysis of a New Heuristic for the Travelling Salesman Problem , 1976, Operations Research Forum.

[21]  Tao Jiang,et al.  Linear approximation of shortest superstrings , 1994, JACM.

[22]  Robert D. Carr,et al.  Towards a 4/3 approximation for the asymmetric traveling salesman problem , 1999, SODA '00.

[23]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .

[24]  Esko Ukkonen,et al.  A Greedy Approximation Algorithm for Constructing Shortest Common Superstrings , 1988, Theor. Comput. Sci..