Sum Rate of Multiterminal Gaussian Source Coding

We characterize the sum rate of a class of multiterminal Gaussian source coding problems with quadratic distortion constraints. The key component of the solution is the identification of a multiple antenna broadcast channel that serves as a test channel.

[1]  James G. Oxley,et al.  Matroid theory , 1992 .

[2]  David Tse,et al.  Multiaccess Fading Channels-Part II: Delay-Limited Capacities , 1998, IEEE Trans. Inf. Theory.

[3]  Thomas M. Cover,et al.  Comments on Broadcast Channels , 1998, IEEE Trans. Inf. Theory.

[4]  David Tse,et al.  Multiaccess Fading Channels-Part I: Polymatroid Structure, Optimal Resource Allocation and Throughput Capacities , 1998, IEEE Trans. Inf. Theory.

[5]  Kannan Ramchandran,et al.  On functional duality in MIMO source and channel coding problems having one-sided collaboration , 2002, Proceedings of the IEEE Information Theory Workshop.

[6]  David Tse,et al.  DIMACS Series in Discrete Mathematics and Theoretical Computer Science On the Capacity of the Multiple Antenna Broadcast Channel , 2002 .

[7]  Katalin Marton,et al.  A coding theorem for the discrete memoryless broadcast channel , 1979, IEEE Trans. Inf. Theory.

[8]  Toby Berger,et al.  Rate-distortion for correlated sources with partially separated encoders , 1982, IEEE Trans. Inf. Theory.

[9]  Andrea J. Goldsmith,et al.  On the capacity of multiple input multiple output broadcast channels , 2002, 2002 IEEE International Conference on Communications. Conference Proceedings. ICC 2002 (Cat. No.02CH37333).

[10]  David Tse,et al.  Sum capacity of the multiple antenna Gaussian broadcast channel , 2002, Proceedings IEEE International Symposium on Information Theory,.

[11]  Wei Yu,et al.  Sum capacity of Gaussian vector broadcast channels , 2004, IEEE Transactions on Information Theory.

[12]  Jack K. Wolf,et al.  Noiseless coding of correlated information sources , 1973, IEEE Trans. Inf. Theory.

[13]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[14]  Max H. M. Costa,et al.  Writing on dirty paper , 1983, IEEE Trans. Inf. Theory.

[15]  Toby Berger,et al.  Multiterminal Source Coding with High Resolution , 1999, IEEE Trans. Inf. Theory.

[16]  Venkat Anantharam,et al.  Optimal sequences and sum capacity of synchronous CDMA systems , 1999, IEEE Trans. Inf. Theory.

[17]  Yasutada Oohama Gaussian multiterminal source coding , 1997, IEEE Trans. Inf. Theory.

[18]  Pramod Viswanath,et al.  Fixed binning schemes: an operational duality between channel and source coding problems with side information , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[19]  Toby Berger,et al.  Multiterminal source encoding with one distortion criterion , 1989, IEEE Trans. Inf. Theory.

[20]  M. Vetterli,et al.  To Code, Or Not To Code: On the Optimality of Symbol-by-Symbol Communication , 2001 .

[21]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[22]  Lloyd R. Welch,et al.  Lower bounds on the maximum cross correlation of signals (Corresp.) , 1974, IEEE Trans. Inf. Theory.