Theory of polarization shift keying modulation

A rigorous analysis of digital coherent optical modulation schemes using the state of polarization as the modulating parameter is presented. The analysis obtains the exact performance of all the polarization-based modulation schemes proposed in the literature so far, including a differential demodulation scheme, named DPOLSK, which does not require either electrooptic or electronic polarization tracking. Preliminary results involving multilevel transmission schemes based on the state of polarization are introduced. A spectral analysis of POLSK signals is also proposed. >

[1]  G. De Marchis,et al.  Phase noise and polarization state insensitive optical coherent systems , 1990 .

[2]  Thomas L. Grettenberg Representation theorem for complex normal processes (Corresp.) , 1965, IEEE Trans. Inf. Theory.

[3]  Larry J. Greenstein,et al.  Noncoherent detection of coherent lightwave signals corrupted by phase noise , 1988, IEEE Trans. Commun..

[4]  Bernhard Enning,et al.  Heterodyne transmission of a 560 Mbit/s optical signal by means of polarisation shift keying , 1987 .

[5]  Leonard J. Cimini,et al.  Preservation of polarisation orthogonality through a linear optical system , 1987 .

[6]  N. S. Bergano,et al.  Polarization dispersion and principal states in a 147-km undersea lightwave cable , 1988 .

[7]  Benedetto Daino,et al.  State of polarisation and phase noise independent coherent optical transmission system based on Stokes parameter detection , 1988 .

[8]  G. Jacobsen,et al.  Theory for heterodyne optical ASK receivers using square-law detection and postdetection filtering , 1987 .

[9]  大越 孝敬,et al.  Coherent optical fiber communications , 1988 .

[10]  Leonid G. Kazovsky,et al.  Bit error ratio of CPFSK coherent optical receivers , 1988 .

[11]  F. Cisternino,et al.  Coherent Transmission With Polarization Modulation: Experimental Results And System Analysis , 1989, Other Conferences.

[12]  J.E. Mazo,et al.  Digital communications , 1985, Proceedings of the IEEE.

[13]  G. De Marchis,et al.  Coherent optical system based on polarization modulation and stokes parameters differential detection tailored for lan application , 1989 .

[14]  Sergio Benedetto,et al.  Digital Transmission Theory , 1987 .

[15]  B. Glance Polarization independent coherent optical receiver , 1987 .

[16]  T. Okoshi,et al.  Simple formula for bit-error rate in optical heterodyne DPSK systems employing polarisation diversity , 1988 .

[17]  T. Okoshi,et al.  Effect of frequency offset in DPSK phase-diversity optical receivers , 1988 .

[18]  Kenneth S. Miller,et al.  Complex stochastic processes: an introduction to theory and application , 1974 .

[19]  D. W. Tufts,et al.  Statistical Communication Theory , 1958 .

[20]  A. W. Davis,et al.  Phase diversity techniques for coherent optical receivers , 1987 .

[21]  S. Rashleigh Origins and control of polarization effects in single-mode fibers (A) , 1982 .

[22]  T. Matsumoto,et al.  Modulation and detection characteristics of optical continuous phase FSK transmission system , 1987 .

[23]  T. Okoshi,et al.  Phase-noise-cancelling dual-frequency heterodyne optical fibre communication system , 1989 .

[24]  R. Calvani,et al.  Polarisation phase-shift keying: a coherent transmission technique with differential heterodyne detection , 1988 .

[25]  R. E. Wagner,et al.  Phenomenological approach to polarisation dispersion in long single-mode fibres , 1986 .

[26]  Athanasios Papoulis,et al.  Probability, Random Variables and Stochastic Processes , 1965 .

[27]  Hiroshi Takenaka,et al.  A unified formalism for polarization optics by using group theory , 1973 .

[28]  I. Miller Probability, Random Variables, and Stochastic Processes , 1966 .

[29]  Katsumi Emura,et al.  System design and long-span transmission experiments on an optical FSK heterodyne single filter detection system , 1987 .

[30]  G. Jacobsen,et al.  Theory for optical heterodyne DPSK receivers with post-detection filtering , 1987 .

[31]  J. W. Humberston Classical mechanics , 1980, Nature.