Interstellar dust and extinction

The ultraviolet (UV) region of the spectrum has been crucial in providing information on the nature of the material and size distribution of the particles of interstellar dust. Before there were any measurements of the UV properties of interstellar extinction, interstellar particles were believed to be composed primarily of dirty ices. The maximum of the interstellar extinction was believed to be at 0.3 μm, the shortest wavelength then observable. Both of these predictions were quite wrong (as are probably many of our present ideas regarding dust). The first rocket measurement (Stecher, 1965) showed that there is a very strong extinction feature at 0.22 μm. Now we also know the extinction increases dramatically towards the shortest wavelengths which can be reliably measured to date.

[1]  David A. Williams,et al.  Dust in the universe , 1988 .

[2]  John F. Kerridge,et al.  Meteorites and the early solar system , 1988 .

[3]  D. Massa,et al.  An analysis of the shapes of ultraviolet extinction curves. I - The 2175 A bump , 1986 .

[4]  J. H. Hecht,et al.  A physical model for the 2175 A interstellar extinction feature , 1986 .

[5]  M. Jura Mass loss from carbon stars , 1986 .

[6]  A. Tielens,et al.  The infrared emission bands. I - Correlation studies and the dependence on C/O ratio. [in planetary and reflection nebulae and H II regions] , 1986 .

[7]  D. Massa,et al.  Ultraviolet extinction toward five open clusters, and the accuracy of IUE extinction measurements , 1986 .

[8]  K. Sellgren,et al.  Emission features in the 4-13 micron spectra of the reflection nebulae NGC 7023 and NGC 2023 , 1985 .

[9]  E. Fitzpatrick Interstellar extinction variations in the Large Magellanic Cloud , 1985 .

[10]  G. Knapp,et al.  Mass loss from evolved stars. III: Mass loss rates for fifty stars from CO J=1−0 observations , 1985 .

[11]  B. Draine,et al.  Temperature fluctuations and infrared emission from interstellar grains. , 1985 .

[12]  R. Stalio,et al.  Interstellar reddening law towards the nucleus of h Per , 1985 .

[13]  L. Prévot,et al.  The visible and infrared extinction law and the gas-to-dust ratio in the Small Magellanic Cloud , 1985 .

[14]  T. Onaka,et al.  Infrared spectrum of the laboratory-synthesized quenched carbonaceous composite (QCC) - Comparison with the infrared unidentified emission bands , 1984 .

[15]  H. M. Lee,et al.  Optical properties of interstellar graphite and silicate grains , 1984 .

[16]  R. Schild,et al.  Photometric study of NGC 2023 in the 3500 A to 10000 A region - Confirmation of a near-IR emission process in reflection nebulae , 1984 .

[17]  A. Holm,et al.  The dust around R Coronae Borealis type stars , 1984 .

[18]  R. Bohlin,et al.  The variation of galactic interstellar extinction in the ultraviolet. , 1984 .

[19]  B. Savage,et al.  Ultraviolet observations of interstellar extinction near the Cepheus OB3 molecular cloud , 1984 .

[20]  L. Prévot,et al.  The typical interstellar extinction in the Small Magellanic Cloud. , 1984 .

[21]  K. Sellgren,et al.  The near-infrared continuum emission of visual reflection nebulae , 1984 .

[22]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[23]  D. Allen,et al.  3 μm spectroscopy of IRS7 towards the Galactic Centre , 1983 .

[24]  David A. Williams,et al.  A 3.4 μm absorption band in amorphous carbon: implications for interstellar dust , 1983 .

[25]  J. Greenberg,et al.  A far-ultraviolet extinction law - What does it mean? , 1983 .

[26]  G. Bromage,et al.  The conspicuous absence of normal graphite grains in the Small Magellanic Cloud. , 1983 .

[27]  D. Massa,et al.  Peculiar ultraviolet interstellar extinction , 1983 .

[28]  Y. Nakada,et al.  Does a 2,200 Å hump observed in an artificial carbonaceous composite account for UV interstellar extinction? , 1983, Nature.

[29]  R. Wilson,et al.  Interstellar extinction in the Small Magellanic Cloud , 1982 .

[30]  D. Morgan,et al.  Interstellar extinction in the Perseus arm , 1982 .

[31]  D. Allen,et al.  Diffuse interstellar absorption bands between 2.9 and 4.0 µm , 1981, Nature.

[32]  B. Savage,et al.  Ultraviolet interstellar extinction toward 1367 stars observed by ANS , 1981 .

[33]  A. Code,et al.  Ultraviolet interstellar extinction in the large Magellanic Cloud using observations with the International Ultraviolet Explorer , 1981 .

[34]  D. Kester ON THE ULTRAVIOLET EXTINCTION IN THE GALACTIC PLANE , 1981 .

[35]  J. L. Greenstein Anomalous extinction in the planetary nebula Abell 30 , 1981 .

[36]  R. Wilson,et al.  Interstellar extinction in the Large Magellanic Cloud , 1980, Nature.

[37]  M. Seaton,et al.  Interstellar extinction in the UV , 1979 .

[38]  Blair D. Savage,et al.  Observed Properties of Interstellar Dust , 1979 .

[39]  W. Duley,et al.  Are there organic grains in the interstellar medium? , 1979, Nature.

[40]  J. Koornneef VARIATIONS IN GALACTIC INTER-STELLAR EXTINCTION LAW , 1978 .

[41]  K. Nordsieck,et al.  The Size distribution of interstellar grains , 1977 .

[42]  B. Savage,et al.  Ultraviolet photometry from the Orbiting Astronomical Observatory. XXIII - The resonance lines of triply ionized carbon and silicon in the spectra of hot stars , 1976 .

[43]  Arthur D. Code,et al.  Empirical effective temperatures and bolometric corrections for early-type stars , 1976 .

[44]  R. Wilson,et al.  Studies of ultraviolet interstellar extinction with the sky-survey telescope of the TD-1 satellite. I - Results for three galactic regions , 1975 .

[45]  B. Savage Ultraviolet photometry from the Orbiting Astronomical Observatory. XX - The ultraviolet extinction bump , 1975 .

[46]  Blair D. Savage,et al.  Ultraviolet photometry from the Orbiting Astronomical Observatory. II Interstellar extinction. , 1972 .

[47]  E. Purcell On the Absorption and Emission of Light by Interstellar Grains , 1969 .

[48]  T. P. Stecher Interstellar Ectinction in the Ultraviolet. , 1965 .