SmartEdge: fog computing cloud extensions to support latency-sensitive IoT applications

O rapido crescimento do numero de dispositivos conectados a Internet, associado as taxas crescentes de popularidade e demanda de aplicacoes e servicos em tempo real na nuvem, com restricoes de latencia, torna muito dificil para estruturas de computacao em nuvem tradicionais acomoda-los de forma eficiente. Mais especificamente, a abordagem centralizada adotada tradicionalmente por Data Centers (DC) atuais apresentam problemas de desempenho para atender de aplicacoes em nuvem com alta densidade, principalmente quanto a capacidade de resposta e escalabilidade. Nossa dependencia insubstituivel por computacao em nuvem, exige infra-estruturas de DCs sempre disponiveis, enquanto mantem ao mesmo tempo capacidades de desempenho suficientes para responder a uma enorme quantidade de solicitacoes de aplicativos em nuvem. Neste trabalho, a aplicabilidade do emergente paradigma de computacao em nevoa e explorada para melhorar o desempenho no suporte de aplicacoes em nuvem sensiveis a latencia voltadas a Internet das Coisas (do ingles Internet of Things - IoT). Com base neste objetivo, apresentamos o novo modelo denominado Infraestrutura de Borda como um Servico (do ingles Edge Infrastructure as a Service - EIaaS), que procura oferecer um novo modelo de computacao em nuvem com servico de entrega baseado em computacao de borda voltado a atender de forma eficiente as exigencias de aplicacoes IoT em tempo real sensiveis a latencia. Com a abordagem EIaaS, provedores de nuvem podem implantar dinamicamente aplicacoes/servicos IoT diretamente nas infra-estruturas de computacao de borda, nem como gerir seus recursos de nuvem/rede em tempo de execucao, como forma de manter as aplicacoes IoT sempre melhor conectadas e melhor servidas. A abordagem resultante e arquitetada em uma estrutura modular, tendo como base tecnologica ferramentas de Rede Definida por Software (do ingles, Software- Defined Networking - SDN) para lidar com recursos de computacao de borda (CPU, memoria, etc.) e de rede (caminhos, largura de banda, etc.), respectivamente. Os resultados preliminares mostram como as principais tecnicas de virtualizacao utilizadas no âmbito deste trabalho, afetam o desempenho das aplicacoes na infraestrutura de borda da rede. A virtualizacao por containers leva vantagem sobre a tecnica de virtualizacao por maquinas virtuais para implantar aplicacoes na borda da rede, uma vez que oferece grande flexibilidade mesmo na presenca de demanda de recursos.

[1]  Malek Ben Salem,et al.  Fog Computing: Mitigating Insider Data Theft Attacks in the Cloud , 2012, 2012 IEEE Symposium on Security and Privacy Workshops.

[2]  Davide Brunelli,et al.  Wireless Sensor Networks , 2012, Lecture Notes in Computer Science.

[3]  Lei Shen,et al.  Urbanization, sustainability and the utilization of energy and mineral resources in China , 2005 .

[4]  Kok-Kiong Yap,et al.  Slicing home networks , 2011, HomeNets '11.

[5]  Raouf Boutaba,et al.  Cloud computing: state-of-the-art and research challenges , 2010, Journal of Internet Services and Applications.

[6]  Albert Y. Zomaya,et al.  Trends and challenges in cloud datacenters , 2014, IEEE Cloud Computing.

[7]  A. Murat Tekalp,et al.  Scalable video streaming over OpenFlow networks: An optimization framework for QoS routing , 2011, 2011 18th IEEE International Conference on Image Processing.

[8]  Y. Koucheryavy,et al.  The internet of Bio-Nano things , 2015, IEEE Communications Magazine.

[9]  Hamid Aghvami,et al.  Cognitive Machine-to-Machine Communications for Internet-of-Things: A Protocol Stack Perspective , 2015, IEEE Internet of Things Journal.

[10]  Thomas Engel,et al.  Energy-efficient high-performance parallel and distributed computing , 2010, The Journal of Supercomputing.

[11]  Mahadev Satyanarayanan,et al.  Edge Computing , 2017, Computer.

[12]  Albert Y. Zomaya,et al.  Evolutionary Scheduling of Dynamic Multitasking Workloads for Big-Data Analytics in Elastic Cloud , 2014, IEEE Transactions on Emerging Topics in Computing.

[13]  Marimuthu Palaniswami,et al.  Internet of Things (IoT): A vision, architectural elements, and future directions , 2012, Future Gener. Comput. Syst..

[14]  Amin Vahdat,et al.  Hedera: Dynamic Flow Scheduling for Data Center Networks , 2010, NSDI.

[15]  Min Chen,et al.  A Survey on Internet of Things From Industrial Market Perspective , 2015, IEEE Access.

[16]  Rajkumar Buyya,et al.  Compatibility-Aware Cloud Service Composition under Fuzzy Preferences of Users , 2014, IEEE Transactions on Cloud Computing.

[17]  Gianluigi Ferrari,et al.  The IoT hub: a fog node for seamless management of heterogeneous connected smart objects , 2015, 2015 12th Annual IEEE International Conference on Sensing, Communication, and Networking - Workshops (SECON Workshops).

[18]  Eduardo Cerqueira,et al.  An innovative software-defined WiNeMO architecture for advanced QoS-guaranteed mobile service transport , 2016, Comput. Networks.

[19]  Miika Komu,et al.  Hypervisors vs. Lightweight Virtualization: A Performance Comparison , 2015, 2015 IEEE International Conference on Cloud Engineering.

[20]  Nalini Venkatasubramanian,et al.  A Software Defined Networking architecture for the Internet-of-Things , 2014, 2014 IEEE Network Operations and Management Symposium (NOMS).

[21]  A. Neeraja,et al.  Licensed under Creative Commons Attribution Cc by Improving Network Management with Software Defined Networking , 2022 .

[22]  Anne H. H. Ngu,et al.  Analysis of Web-Scale Cloud Services , 2014, IEEE Internet Computing.

[23]  Thomas A. Limoncelli OpenFlow: A Radical New Idea in Networking , 2012, ACM Queue.

[24]  Hwee Pink Tan,et al.  Sensor OpenFlow: Enabling Software-Defined Wireless Sensor Networks , 2012, IEEE Communications Letters.

[25]  Mario Nemirovsky,et al.  Key ingredients in an IoT recipe: Fog Computing, Cloud computing, and more Fog Computing , 2014, 2014 IEEE 19th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD).

[26]  Qi Hao,et al.  A Survey on Software-Defined Network and OpenFlow: From Concept to Implementation , 2014, IEEE Communications Surveys & Tutorials.

[27]  Antonio Iera,et al.  The Internet of Things: A survey , 2010, Comput. Networks.

[28]  Sujata Banerjee,et al.  ElasticTree: Saving Energy in Data Center Networks , 2010, NSDI.

[29]  Arkady B. Zaslavsky,et al.  Sensing as a service model for smart cities supported by Internet of Things , 2013, Trans. Emerg. Telecommun. Technol..

[30]  H. Madsen,et al.  Reliability in the utility computing era: Towards reliable Fog computing , 2013, 2013 20th International Conference on Systems, Signals and Image Processing (IWSSIP).

[31]  Anurag Agarwal,et al.  The Internet of Things—A survey of topics and trends , 2014, Information Systems Frontiers.

[32]  Thierry Turletti,et al.  A Survey of Software-Defined Networking: Past, Present, and Future of Programmable Networks , 2014, IEEE Communications Surveys & Tutorials.

[33]  Paramvir Bahl,et al.  The Case for VM-Based Cloudlets in Mobile Computing , 2009, IEEE Pervasive Computing.

[34]  Thanasis Loukopoulos,et al.  On minimizing the resource consumption of cloud applications using process migrations , 2013, J. Parallel Distributed Comput..

[35]  Sherali Zeadally,et al.  An Analysis of RFID Authentication Schemes for Internet of Things in Healthcare Environment Using Elliptic Curve Cryptography , 2015, IEEE Internet of Things Journal.

[36]  Joseph Wei,et al.  How Wearables Intersect with the Cloud and the Internet of Things : Considerations for the developers of wearables. , 2014, IEEE Consumer Electronics Magazine.

[37]  Hans Schaffers,et al.  Smart Cities and the Future Internet: Towards Cooperation Frameworks for Open Innovation , 2011, Future Internet Assembly.

[38]  Chris Rose,et al.  A Break in the Clouds: Towards a Cloud Definition , 2011 .

[39]  Athanasios V. Vasilakos,et al.  A Survey on Service-Oriented Network Virtualization Toward Convergence of Networking and Cloud Computing , 2012, IEEE Transactions on Network and Service Management.

[40]  Lida Xu,et al.  CLOUDQUAL: A Quality Model for Cloud Services , 2014, IEEE Transactions on Industrial Informatics.

[41]  Monia Ghobadi,et al.  Rethinking end-to-end congestion control in software-defined networks , 2012, HotNets-XI.

[42]  Rajkumar Buyya,et al.  Market-Oriented Cloud Computing: Vision, Hype, and Reality for Delivering IT Services as Computing Utilities , 2008, 2008 10th IEEE International Conference on High Performance Computing and Communications.

[43]  Zhou Cheng,et al.  Overview of the Internet of Things , 2011 .

[44]  Kevin Ashton,et al.  That ‘Internet of Things’ Thing , 1999 .

[45]  Rajiv Ranjan,et al.  Processing Distributed Internet of Things Data in Clouds , 2015, IEEE Cloud Computing.

[46]  A. Murat Tekalp,et al.  OpenQoS: An OpenFlow controller design for multimedia delivery with end-to-end Quality of Service over Software-Defined Networks , 2012, Proceedings of The 2012 Asia Pacific Signal and Information Processing Association Annual Summit and Conference.

[47]  Rajiv Ranjan,et al.  The Cloud Interoperability Challenge , 2014, IEEE Cloud Computing.

[48]  P. Mell,et al.  The NIST Definition of Cloud Computing , 2011 .

[49]  Tania Regina Tronco,et al.  A Brief History of the Internet , 2010 .

[50]  Marimuthu Palaniswami,et al.  An Information Framework for Creating a Smart City Through Internet of Things , 2014, IEEE Internet of Things Journal.

[51]  Pooyan Jamshidi,et al.  Microservices Architecture Enables DevOps: Migration to a Cloud-Native Architecture , 2016, IEEE Software.

[52]  Renato Recio,et al.  Software defined networking to support the software defined environment , 2014, IBM J. Res. Dev..

[53]  Chuan Pham,et al.  A proximal algorithm for joint resource allocation and minimizing carbon footprint in geo-distributed fog computing , 2014, 2015 International Conference on Information Networking (ICOIN).

[54]  Ben Halpert,et al.  Auditing Cloud Computing: A Security and Privacy Guide , 2011 .

[55]  Nei Kato,et al.  Device-to-device communications for enhancing quality of experience in software defined multi-tier LTE-A networks , 2015, IEEE Network.

[56]  Richard E. Brown,et al.  Report to Congress on Server and Data Center Energy Efficiency: Public Law 109-431 , 2008 .

[57]  W. Collins,et al.  Global climate projections , 2007 .

[58]  Hao Hu,et al.  Improving Web Sites Performance Using Edge Servers in Fog Computing Architecture , 2013, 2013 IEEE Seventh International Symposium on Service-Oriented System Engineering.

[59]  Umakishore Ramachandran,et al.  MB++: An Integrated Architecture for Pervasive Computing and High-Performance Computing , 2007, 13th IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA 2007).

[60]  Dirk Merkel,et al.  Docker: lightweight Linux containers for consistent development and deployment , 2014 .

[61]  Symeon Papavassiliou,et al.  A Cloud-Oriented Content Delivery Network Paradigm: Modeling and Assessment , 2013, IEEE Transactions on Dependable and Secure Computing.

[62]  Hüseyin Arslan,et al.  A survey of spectrum sensing algorithms for cognitive radio applications , 2009, IEEE Communications Surveys & Tutorials.

[63]  Jiang Zhu,et al.  Fog Computing: A Platform for Internet of Things and Analytics , 2014, Big Data and Internet of Things.

[64]  Vijay Sivaraman,et al.  User control of quality of experience in home networks using SDN , 2013, 2013 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS).

[65]  Ivan Stojmenovic,et al.  The Fog computing paradigm: Scenarios and security issues , 2014, 2014 Federated Conference on Computer Science and Information Systems.

[66]  Wei Chen,et al.  QoS-aware virtual machine scheduling for video streaming services in multi-cloud , 2013 .

[67]  David Lillethun,et al.  Mobile fog: a programming model for large-scale applications on the internet of things , 2013, MCC '13.

[68]  Weisong Shi,et al.  Edge Computing: Vision and Challenges , 2016, IEEE Internet of Things Journal.

[69]  Ali Sydney,et al.  The evaluation of software defined networking for communication and control of cyber physical systems , 2013 .

[70]  Raj Jain,et al.  Network virtualization and software defined networking for cloud computing: a survey , 2013, IEEE Communications Magazine.

[71]  Lei Zhang,et al.  Joint Design on DCN Placement and Survivable Cloud Service Provision over All-Optical Mesh Networks , 2014, IEEE Transactions on Communications.

[72]  Chen Liang,et al.  Participatory networking: an API for application control of SDNs , 2013, SIGCOMM.

[73]  Lida Xu,et al.  Cloud Service Negotiation in Internet of Things Environment: A Mixed Approach , 2014, IEEE Transactions on Industrial Informatics.

[74]  Alexandr Krylovskiy Internet of Things gateways meet linux containers: Performance evaluation and discussion , 2015, 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT).

[75]  Eui-nam Huh,et al.  Fog Computing Micro Datacenter Based Dynamic Resource Estimation and Pricing Model for IoT , 2015, 2015 IEEE 29th International Conference on Advanced Information Networking and Applications.

[76]  Dan C. Marinescu,et al.  Cloud Computing: Theory and Practice , 2013 .

[77]  Lee Gillam,et al.  Cloud Computing, Principles, Systems and Applications , 2010, Cloud Computing.

[78]  Hsiao-Hwa Chen,et al.  An Integrated Architecture for Software Defined and Virtualized Radio Access Networks with Fog Computing , 2017, IEEE Network.

[79]  Luis Miguel Vaquero Gonzalez,et al.  Towards Runtime Reconfiguration of Application Control Policies in the Cloud , 2012, Journal of Network and Systems Management.

[80]  Dzmitry Kliazovich,et al.  e-STAB: Energy-Efficient Scheduling for Cloud Computing Applications with Traffic Load Balancing , 2013, 2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber, Physical and Social Computing.

[81]  R. Hollands Will the real smart city please stand up? , 2008, The Routledge Companion to Smart Cities.