A mutually referenced blind multiuser separation of convolutive mixture algorithm

In this paper, we present a new subspace adaptive algorithm for the blind separation problem of a convolutive mixture. The major advantage of such an algorithm is that almost all the unknown parameters of the inverse channel can be estimated using only second-order statistics. In fact, a subspace approach was used to transform the convolutive mixture into an instantaneous mixture using a criterion of second-order statistics. It is known that the convergence of subspace algorithms is in general, very slow. To improve the convergence speed of our algorithm, a conjugate gradient method was used to minimize the subspace criterion. The experimental results show that the convergence of our algorithm is improved due to the use of the conjugate gradient method.

[1]  Christian Jutten,et al.  A direct solution for blind separation of sources , 1996, IEEE Trans. Signal Process..

[2]  Nathalie Delfosse,et al.  Adaptive blind separation of convolutive mixtures , 1996, Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers.

[3]  David Gesbert,et al.  On-line blind multichannel equalization based on mutually referenced filters , 1997, IEEE Trans. Signal Process..

[4]  B. Anderson,et al.  Greatest common divisor via generalized Sylvester and Bezout matrices , 1978 .

[5]  Allan Kardec Barros,et al.  Comparison among Three Estimators for High Order Statistics , 1998, ICONIP.

[6]  J. Hérault,et al.  Réseau de neurones à synapses modifiables: décodage de messages sensoriels composites par apprentissage non supervisé et permanent , 1984 .

[7]  Philippe Loubaton,et al.  A subspace algorithm for certain blind identification problems , 1997, IEEE Trans. Inf. Theory.

[8]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[9]  Noboru Ohnishi,et al.  Multichannel blind separation of sources algorithm based on cross-cumulant and the Levenberg-Marquardt method , 1999, IEEE Trans. Signal Process..

[10]  Philippe Loubaton,et al.  On subspace methods for blind identification of single-input multiple-output FIR systems , 1997, IEEE Trans. Signal Process..

[11]  Christian Jutten,et al.  Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture , 1991, Signal Process..

[12]  Dirk Van Compernolle,et al.  Signal separation by symmetric adaptive decorrelation: stability, convergence, and uniqueness , 1995, IEEE Trans. Signal Process..

[13]  Shun-ichi Amari,et al.  Blind source separation-semiparametric statistical approach , 1997, IEEE Trans. Signal Process..

[14]  C. Jutten,et al.  Subspace method for blind separation of sources and for a convolutive mixture model , 1996 .

[15]  Christian Jutten,et al.  Fourth-order criteria for blind sources separation , 1995, IEEE Trans. Signal Process..

[16]  Philippe Loubaton,et al.  Adaptive subspace algorithm for blind separation of independent sources in convolutive mixture , 2000, IEEE Trans. Signal Process..

[17]  Tapan K. Sarkar,et al.  Adaptive spectral estimation by the conjugate gradient method , 1986, IEEE Trans. Acoust. Speech Signal Process..

[19]  S. D. Hansen,et al.  Signal Processing VII: Theories and Applications , 1994 .

[20]  S. Liberty,et al.  Linear Systems , 2010, Scientific Parallel Computing.

[21]  Serge Dégerine,et al.  Second-order blind separation of sources based on canonical partial innovations , 2000, IEEE Trans. Signal Process..

[22]  A. Gorokhov,et al.  Subspace-based techniques for blind separation of convolutive mixtures with temporally correlated sources , 1997 .

[23]  N. Ohnishi,et al.  A batch subspace ICA algorithm , 2000, Proceedings of the Tenth IEEE Workshop on Statistical Signal and Array Processing (Cat. No.00TH8496).

[24]  Philippe Loubaton,et al.  Subspace based techniques for second order blind separation of convolutive mixtures with temporally correlated sources , 1997 .

[25]  Christian Jutten,et al.  Blind source separation for convolutive mixtures , 1995, Signal Process..

[26]  Holger Broman,et al.  Source separation using a criterion based on second-order statistics , 1998, IEEE Trans. Signal Process..

[27]  Dirk Van Compernolle,et al.  Blind separation of sources : a comparative study of a 2-nd and a 4-th order solution , 1994 .

[28]  Jean-François Cardoso,et al.  Equivariant adaptive source separation , 1996, IEEE Trans. Signal Process..

[29]  Allan Kardec Barros,et al.  A fast algorithm for blind separation of sources based on the cross-cumulant and Levenberg-Marquardt method , 1998, ICSP '98. 1998 Fourth International Conference on Signal Processing (Cat. No.98TH8344).

[30]  Ali Mansour,et al.  A simple cost function for instantaneous and convolutive sources separation , 1995 .