On the modeling of confined buckling of force chains

Buckling of force chains, laterally confined by weak network particles, has long been held as the underpinning mechanism for key instabilities arising in dense, cohesionless granular assemblies, e.g. shear banding and slip-stick phenomena. Despite the demonstrated significance of this mechanism from numerous experimental and discrete element studies, there is as yet no model for the confined buckling of force chains. We present herein the first structural mechanical model of this mechanism. Good agreement is found between model predictions and confined force chain buckling events in discrete element simulations. A complete parametric analysis is undertaken to determine the effect of various particle-scale properties on the stability and failure of force chains. Transparency across scales is achieved, as the mechanisms on the microscopic and mesoscopic domains, which drive well-known macroscopic trends in biaxial compression tests, are elucidated.

[1]  M. Oda,et al.  Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils , 1998 .

[2]  Ching S. Chang,et al.  Stability, bifurcation, and softening in discrete systems: A conceptual approach for granular materials , 2006, 1901.07340.

[3]  N. P. Kruyt,et al.  Force, relative-displacement, and work networks in granular materials subjected to quasistatic deformation. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  H. Jaeger,et al.  Structural signature of jamming in granular media , 2005, Nature.

[5]  Haye Hinrichsen,et al.  The physics of granular media , 2004 .

[6]  Antoinette Tordesillas,et al.  Force chain buckling, unjamming transitions and shear banding in dense granular assemblies , 2007 .

[7]  S. Walsh,et al.  Development of micromechanical models for granular media , 2007 .

[8]  Jean-Pierre Bardet,et al.  Observations on the effects of particle rotations on the failure of idealized granular materials , 1994 .

[9]  Antoinette Tordesillas,et al.  How do interparticle contact friction, packing density and degree of polydispersity affect force propagation in particulate assemblies? , 2006 .

[10]  J. Peters,et al.  Insights into 1D localisation theory and micromechanical constitutive laws , 2004 .

[11]  T. M. Knowlton,et al.  The importance of storage, transfer, and collection , 1994 .

[12]  J. Bardet,et al.  The structure of persistent shear bands in idealized granular media , 1991 .

[13]  Gaël Combe,et al.  Experimental micromechanical analysis of a 2D granular material: relation between structure evolution and loading path , 1997 .

[14]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[15]  Masanobu Oda,et al.  Study on couple stress and shear band development in granular media based on numerical simulation analyses , 2000 .

[16]  Amy L. Rechenmacher,et al.  Grain-scale processes governing shear band initiation and evolution in sands , 2006 .

[17]  H. Sakaguchi,et al.  Plugging of the Flow of Granular Materials during the Discharge from a Silo , 1993 .

[18]  Dimitrios Kolymbas,et al.  Recent results of triaxial tests with granular materials , 1990 .

[19]  Farhang Radjai,et al.  Rheology, force transmission, and shear instabilities in frictional granular media from biaxial numerical tests using the contact dynamics method , 2005 .

[20]  M. Oda,et al.  Rolling Resistance at Contacts in Simulation of Shear Band Development by DEM , 1998 .

[21]  Giles W Hunt,et al.  FINITE ELEMENT MODELLING OF SPATIALLY CHAOTIC STRUCTURES , 1997 .

[22]  Stefan Luding,et al.  Molecular Dynamics Simulations of Granular Materials , 2004 .

[23]  J. Jenkins,et al.  A continuum theory for a random array of identical, elastic, frictional disks , 2006 .

[24]  E. Aharonov,et al.  Stick-slip motion in simulated granular layers , 2004 .

[25]  R. Farris,et al.  A model for the compressive buckling of extended chain polymers , 1985 .

[26]  K. C. Valanis,et al.  A gradient theory of internal variables , 1996 .

[27]  Colin Thornton,et al.  A numerical examination of shear banding and simple shear non-coaxial flow rules , 2006 .

[28]  Masanobu Oda,et al.  Microstructure in shear band observed by microfocus X-ray computed tomography , 2004 .

[29]  I Vardoulakis,et al.  Effect of rolling on dissipation in fault gouges. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  T. Majmudar,et al.  Contact force measurements and stress-induced anisotropy in granular materials , 2005, Nature.

[31]  Antoinette Tordesillas,et al.  A thermomicromechanical approach to multiscale continuum modeling of dense granular materials , 2008 .

[32]  Russell P. Goodman,et al.  Rapid Chiral Assembly of Rigid DNA Building Blocks for Molecular Nanofabrication , 2005, Science.

[33]  G. Gioia,et al.  The energetics of heterogeneous deformation in open-cell solid foams , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[34]  Z. Bažant,et al.  Stability of Structures: Elastic, Inelastic, Fracture and Damage Theories , 2010 .

[35]  Antoinette Tordesillas,et al.  Mesoscale Measures of Nonaffine Deformation in Dense Granular Assemblies , 2008 .

[36]  M. Cates,et al.  Jamming, Force Chains, and Fragile Matter , 1998, cond-mat/9803197.

[37]  E. N. Bromhead,et al.  Computer methods and advances in geomechanics: G. Beer, J.R. Booker and J.P. Carter (eds) Balkema, Rotterdam, 1991, £122, (3 volumes) ISBN (Set) 90-6191-189-3 , 1993 .

[38]  Antoinette Tordesillas,et al.  A thermomechanical approach to the development of micropolar constitutive models of granular media , 2004 .

[39]  Gioacchino Viggiani,et al.  Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry , 2004 .

[40]  K. C. Valanis,et al.  The concept of physical metric in thermodynamics , 1995 .

[41]  R. Superfine,et al.  Bending and buckling of carbon nanotubes under large strain , 1997, Nature.

[42]  A. Tordesillas Stranger than friction: force chain buckling and its implications for constitutive modelling , 2007 .

[43]  Antoinette Tordesillas,et al.  Buckling force chains in dense granular assemblies: physical and numerical experiments , 2009 .

[44]  Pierre-Yves Hicher,et al.  An elasto-plastic model for granular materials with microstructural consideration , 2005 .

[45]  Hai-Sui Yu,et al.  A novel discrete model for granular material incorporating rolling resistance , 2005 .

[46]  S. Walsh,et al.  The Effect of Local Kinematics on the Local and Global Deformations of Granular Systems , 2010 .

[47]  Farhang Radjai,et al.  BIMODAL CHARACTER OF STRESS TRANSMISSION IN GRANULAR PACKINGS , 1998 .

[48]  B. Ji,et al.  How do slender mineral crystals resist buckling in biological materials? , 2004 .

[49]  M. Oda,et al.  Micro-Deformation Mechanism of Shear Banding Process Based on Modified Distinct Element Method , 1999 .

[50]  R. Behringer Sands, Powders, and Grains: An Introduction to the Physics of Granular Materials , 1999 .

[51]  A. Tordesillas,et al.  Incorporating rolling resistance and contact anisotropy in micromechanical models of granular media , 2002 .

[52]  J F Peters,et al.  Characterization of force chains in granular material. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[53]  Matthew R. Kuhn,et al.  Structured deformation in granular materials , 1999 .

[54]  J. Vilotte,et al.  Memory of the unjamming transition during cyclic tiltings of a granular pile. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  Daniel A. Fletcher,et al.  Reversible stress softening of actin networks , 2007, Nature.