Crystal structure and molecular dynamics studies of purine nucleoside phosphorylase from Mycobacterium tuberculosis associated with acyclovir.

[1]  A. Villela,et al.  Purine Salvage Pathway in Mycobacterium tuberculosis. , 2011, Current medicinal chemistry.

[2]  L. A. Basso,et al.  Purine Nucleoside Phosphorylase as a Molecular Target to Develop Active Compounds Against Mycobacterium Tuberculosis , 2010 .

[3]  W. F. de Azevedo,et al.  Crystallographic and docking studies of purine nucleoside phosphorylase from Mycobacterium tuberculosis. , 2010, Bioorganic & medicinal chemistry.

[4]  D. Bhattacharyya,et al.  Why pyridine containing pyrido[2,3-d]pyrimidin-7-ones selectively inhibit CDK4 than CDK2: insights from molecular dynamics simulation. , 2010, Journal of molecular graphics & modelling.

[5]  W. F. de Azevedo,et al.  Crystal structure and molecular dynamics studies of human purine nucleoside phosphorylase complexed with 7-deazaguanine. , 2010, Journal of structural biology.

[6]  L. A. Basso,et al.  Substrate specificity and kinetic mechanism of purine nucleoside phosphorylase from Mycobacterium tuberculosis. , 2009, Archives of biochemistry and biophysics.

[7]  Walter Filgueira de Azevedo,et al.  Molecular modeling, dynamics and docking studies of purine nucleoside phosphorylase from Streptococcus pyogenes. , 2009, Biophysical Chemistry.

[8]  Walter Filgueira de Azevedo,et al.  Structural studies of human purine nucleoside phosphorylase: towards a new specific empirical scoring function. , 2008, Archives of biochemistry and biophysics.

[9]  W. F. de Azevedo,et al.  Molecular modeling and dynamics simulations of PNP from Streptococcus agalactiae. , 2008, Bioorganic & medicinal chemistry.

[10]  Carsten Kutzner,et al.  GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. , 2008, Journal of chemical theory and computation.

[11]  Michael J. Keiser,et al.  Relating protein pharmacology by ligand chemistry , 2007, Nature Biotechnology.

[12]  W. Parker,et al.  Purine metabolism in Mycobacterium tuberculosis as a target for drug development. , 2007, Current pharmaceutical design.

[13]  M. Parrinello,et al.  Canonical sampling through velocity rescaling. , 2007, The Journal of chemical physics.

[14]  L. A. Basso,et al.  The resumption of consumption -- a review on tuberculosis. , 2006, Memorias do Instituto Oswaldo Cruz.

[15]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[16]  C. Dye,et al.  Tuberculosis control in the era of HIV , 2005, Nature Reviews Immunology.

[17]  W. V. Gunsteren,et al.  Validation of the 53A6 GROMOS force field , 2005, European Biophysics Journal.

[18]  W. F. de Azevedo,et al.  New catalytic mechanism for human purine nucleoside phosphorylase. , 2005, Biochemical and biophysical research communications.

[19]  D. McRee Differential evolution for protein crystallographic optimizations. , 2004, Acta crystallographica. Section D, Biological crystallography.

[20]  J. H. Pereira,et al.  Crystallographic structure of PNP from Mycobacterium tuberculosis at 1.9A resolution. , 2004, Biochemical and biophysical research communications.

[21]  S. Yokoyama,et al.  Crystal structure of purine nucleoside phosphorylase from Thermus thermophilus. , 2004, Journal of molecular biology.

[22]  Walter Filgueira de Azevedo,et al.  Crystal structure of human purine nucleoside phosphorylase complexed with acyclovir. , 2003, Biochemical and biophysical research communications.

[23]  Walter Filgueira de Azevedo,et al.  Crystal structure of human purine nucleoside phosphorylase at 2.3A resolution. , 2003, Biochemical and biophysical research communications.

[24]  J Navaza,et al.  Implementation of molecular replacement in AMoRe. , 2001, Acta crystallographica. Section D, Biological crystallography.

[25]  R. Furneaux,et al.  Structures of purine nucleoside phosphorylase from Mycobacterium tuberculosis in complexes with immucillin-H and its pieces. , 2001, Biochemistry.

[26]  R. Furneaux,et al.  Purine nucleoside phosphorylase from Mycobacterium tuberculosis. Analysis of inhibition by a transition-state analogue and dissection by parts. , 2001, Biochemistry.

[27]  B. Hess,et al.  Similarities between principal components of protein dynamics and random diffusion , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[28]  W. Saenger,et al.  Crystal structure of the purine nucleoside phosphorylase (PNP) from Cellulomonas sp. and its implication for the mechanism of trimeric PNPs. , 1999, Journal of molecular biology.

[29]  B. Barrell,et al.  Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence , 1998, Nature.

[30]  C. Mao,et al.  The crystal structure of Escherichia coli purine nucleoside phosphorylase: a comparison with the human enzyme reveals a conserved topology. , 1997, Structure.

[31]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[32]  D. M. F. Aalten,et al.  PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules , 1996, J. Comput. Aided Mol. Des..

[33]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[34]  J M Thornton,et al.  LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. , 1995, Protein engineering.

[35]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[36]  H. Berendsen,et al.  Essential dynamics of proteins , 1993, Proteins.

[37]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[38]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[39]  C. Breneman,et al.  Determining atom‐centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis , 1990 .

[40]  A. Bzowska,et al.  Properties of Purine Nucleoside Phosphorylase (PNP) of Mammalian and Bacterial Origin , 1990, Zeitschrift fur Naturforschung. C, Journal of biosciences.

[41]  T. Straatsma,et al.  THE MISSING TERM IN EFFECTIVE PAIR POTENTIALS , 1987 .

[42]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[43]  T A Krenitsky,et al.  Effects of acyclovir and its metabolites on purine nucleoside phosphorylase. , 1984, The Journal of biological chemistry.

[44]  Kalckar Hm Differential spectrophotometry of purine compounds by means of specific enzymes; determination of hydroxypurine compounds. , 1947 .

[45]  S. Ealick,et al.  Structural analyses reveal two distinct families of nucleoside phosphorylases. , 2002, The Biochemical journal.

[46]  N. Guex,et al.  SWISS‐MODEL and the Swiss‐Pdb Viewer: An environment for comparative protein modeling , 1997, Electrophoresis.

[47]  K. Jensen Purine-nucleoside phosphorylase from Salmonella typhimurium and Escherichia coli. Initial velocity kinetics, ligand banding, and reaction mechanism. , 1976, European Journal of Biochemistry.

[48]  K. Jensen Purine‐Nucleoside Phosphorylase from Salmonella typhimurium and Escherichia coli , 1976 .

[49]  H. Kalckar Differential spectrophotometry of purine compounds by means of specific enzymes; determination of hydroxypurine compounds. , 1947, The Journal of biological chemistry.