Scientific design of a high contrast integral field spectrograph for the Subaru Telescope

Ground-based telescopes equipped with adaptive-optics (AO) systems and specialized science cameras are now capable of directly detecting extrasolar planets. We present the expected scientific capabilities of CHARIS, the Coronagraphic High Angular Resolution Imaging Spectrograph, which is being built for the Subaru 8.2 m telescope of the National Astronomical Observatory of Japan. CHARIS will be implemented behind the new extreme adaptive optics system at Subaru, SCExAO, and the existing 188-actuator system AO188. CHARIS will offer three observing modes over near-infrared wavelengths from 0.9 to 2.4 μm (the y-, J-, H-, and K-bands), including a low-spectral-resolution mode covering this entire wavelength range and a high-resolution mode within a single band. With these capabilities, CHARIS will offer exceptional sensitivity for discovering giant exoplanets, and will enable detailed characterization of their atmospheres. CHARIS, the only planned high-contrast integral field spectrograph on an 8m-class telescope in the Northern Hemisphere, will complement the similar instruments such as Project 1640 at Palomar, and GPI and SPHERE in Chile.

[1]  Subaru Telescope,et al.  DISCOVERY OF THE COLDEST IMAGED COMPANION OF A SUN-LIKE STAR , 2009, 0911.1127.

[2]  R. Vanderbei,et al.  Extrasolar Planet Finding via Optimal Apodized-Pupil and Shaped-Pupil Coronagraphs , 2003 .

[3]  Ian R. Parry,et al.  A new integral field spectrograph for exoplanetary science at Palomar , 2008, Astronomical Telescopes + Instrumentation.

[4]  E. Kokubo,et al.  DIRECT IMAGING OF FINE STRUCTURES IN GIANT PLANET-FORMING REGIONS OF THE PROTOPLANETARY DISK AROUND AB AURIGAE , 2011, 1102.4408.

[5]  H. Ford,et al.  Imaging Spectroscopy for Extrasolar Planet Detection , 2002, astro-ph/0209078.

[6]  C. A. Grady,et al.  DISCOVERY OF SMALL-SCALE SPIRAL STRUCTURES IN THE DISK OF SAO 206462 (HD 135344B): IMPLICATIONS FOR THE PHYSICAL STATE OF THE DISK FROM SPIRAL DENSITY WAVE THEORY , 2012, 1202.6139.

[7]  Brian J. Bauman,et al.  The integral field spectrograph for the Gemini planet imager , 2014, Astronomical Telescopes and Instrumentation.

[8]  Bruce A. Macintosh,et al.  The Gemini Planet Imager: from science to design to construction , 2008, Astronomical Telescopes + Instrumentation.

[9]  Shane Jacobson,et al.  Performance characterization of the HiCIAO instrument for the Subaru Telescope , 2010, Astronomical Telescopes + Instrumentation.

[10]  Gautam Vasisht,et al.  SPECKLE SUPPRESSION WITH THE PROJECT 1640 INTEGRAL FIELD SPECTROGRAPH , 2010, 1012.4016.

[11]  Motohide Tamura,et al.  Subaru Strategic Exploration of Exoplanets and Disks with HiCIAO/AO188 (SEEDS) , 2009 .

[12]  Frantz Martinache,et al.  The Subaru coronagraphic extreme AO project: progress report , 2011, Optical Engineering + Applications.

[13]  M. Ireland,et al.  LkCa 15: A YOUNG EXOPLANET CAUGHT AT FORMATION? , 2011, 1110.3808.

[14]  Adam J. Burgasser The Brown Dwarf-Exoplanet Connection , 2009 .

[15]  I. Neill Reid,et al.  The Brown Dwarf — Exoplanet Connection , 2008 .

[16]  Mark Clampin,et al.  Optical Images of an Exosolar Planet 25 Light-Years from Earth , 2008, Science.

[17]  S. Ridgway,et al.  Exoplanet Imaging with a Phase-induced Amplitude Apodization Coronagraph. I. Principle , 2004, astro-ph/0412179.

[18]  Frantz Martinache,et al.  Wavefront control with the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system , 2011, Optical Engineering + Applications.

[19]  N. Thatte,et al.  Very high contrast integral field spectroscopy of AB Doradus C: 9-mag contrast at 0.2 arcsec without a coronagraph using spectral deconvolution , 2007, astro-ph/0703565.

[20]  C. A. Grady,et al.  NEAR-INFRARED MULTI-BAND PHOTOMETRY OF THE SUBSTELLAR COMPANION GJ 758 B , 2010, 1011.5505.

[21]  Olivier Guyon,et al.  CAN GROUND-BASED TELESCOPES DETECT THE OXYGEN 1.27 μm ABSORPTION FEATURE AS A BIOMARKER IN EXOPLANETS? , 2012, 1206.0558.

[22]  J. P. Laboratory,et al.  High-Contrast Imaging from Space: Speckle Nulling in a Low-Aberration Regime , 2005, astro-ph/0510597.

[23]  T. Fusco,et al.  A probable giant planet imaged in the beta Pictoris disk. VLT/NaCo deep L'-band imaging , 2008, 0811.3583.

[24]  Michael McElwain,et al.  High-contrast imaging with Keck adaptive optics and OSIRIS , 2008, Astronomical Telescopes + Instrumentation.

[25]  Subaru Telescope,et al.  IMAGING OF A TRANSITIONAL DISK GAP IN REFLECTED LIGHT: INDICATIONS OF PLANET FORMATION AROUND THE YOUNG SOLAR ANALOG LkCa 15 , 2010, 1005.5162.

[26]  C. Fabron,et al.  SPHERE: a planet finder instrument for the VLT , 2006, Astronomical Telescopes + Instrumentation.

[27]  Frantz Martinache,et al.  Conceptual design of the Coronagraphic High Angular Resolution Imaging Spectrograph (CHARIS) for the Subaru telescope , 2012, Other Conferences.

[28]  B. Macintosh,et al.  Direct Imaging of Multiple Planets Orbiting the Star HR 8799 , 2008, Science.

[29]  Jennifer E. Roberts,et al.  APPLICATION OF A DAMPED LOCALLY OPTIMIZED COMBINATION OF IMAGES METHOD TO THE SPECTRAL CHARACTERIZATION OF FAINT COMPANIONS USING AN INTEGRAL FIELD SPECTROGRAPH , 2011, 1111.6102.

[30]  Alan P. Boss,et al.  Giant Planet Formation by Gravitational Instability , 1997 .

[31]  Adam Burrows,et al.  SPECTRAL AND PHOTOMETRIC DIAGNOSTICS OF GIANT PLANET FORMATION SCENARIOS , 2011, 1108.5172.

[32]  D. Fantinel,et al.  Optical design and test of the BIGRE-based IFS of SPHERE , 2011, Optical Systems Design.

[33]  E. Pecontal,et al.  3D spectrography at high spatial resolution. I. Concept and realization of the integral field spectrograph TIGER. , 1995 .

[34]  Jack J. Lissauer,et al.  Formation of the Giant Planets by Concurrent Accretion of Solids and Gas , 1995 .