Numerical relativity using a generalized harmonic decomposition

A new numerical scheme to solve the Einstein field equations based upon the generalized harmonic decomposition of the Ricci tensor is introduced. The source functions driving the wave equations that define generalized harmonic coordinates are treated as independent functions, and encode the coordinate freedom of solutions. Techniques are discussed to impose particular gauge conditions through a specification of the source functions. A 3D, free evolution, finite difference code implementing this system of equations with a scalar field matter source is described. The second-order-in-space-and-time partial differential equations are discretized directly without the use of first-order auxiliary terms, limiting the number of independent functions to 15—ten metric quantities, four source functions and the scalar field. This also limits the number of constraint equations, which can only be enforced to within truncation error in a numerical free evolution, to four. The coordinate system is compactified to spatial infinity in order to impose physically motivated, constraint-preserving outer boundary conditions. A variant of the cartoon method for efficiently simulating axisymmetric spacetimes with a Cartesian code is described that does not use interpolation, and is easier to incorporate into existing adaptive mesh refinement packages. Preliminary test simulations of vacuum black-hole evolution and black-hole formation via scalar field collapse are described, suggesting that this method may be useful for studying many spacetimes of interest.

[1]  A numerical relativistic model of a massive particle in orbit near a Schwarzschild black hole , 2003, gr-qc/0301060.

[2]  Oscar Reula,et al.  Summation by parts and dissipation for domains with excised regions , 2003, gr-qc/0308007.

[3]  Initial Data for Numerical Relativity , 2000, Living reviews in relativity.

[4]  O. Sarbach,et al.  On the well posedness of the Baumgarte-Shapiro-Shibata-Nakamura formulation of Einstein's field equations , 2004, gr-qc/0406003.

[5]  H. Kreiss,et al.  Some Mathematical and Numerical Questions Connected with First and Second Order Time-Dependent Systems of Partial Differential Equations , 2001, gr-qc/0106085.

[6]  Towards the final fate of an unstable black string , 2003, gr-qc/0304085.

[7]  3D simulations of Einstein's equations: Symmetric hyperbolicity, live gauges, and dynamic control of the constraints , 2003, gr-qc/0312001.

[8]  Finding apparent horizons in numerical relativity. , 1995, Physical review. D, Particles and fields.

[9]  Extended Lifetime in Computational Evolution of Isolated Black Holes , 2003, gr-qc/0307055.

[10]  Helmut Friedrich,et al.  On the hyperbolicity of Einstein's and other gauge field equations , 1985 .

[11]  An axisymmetric gravitational collapse code , 2003, gr-qc/0301006.

[12]  Gioel Calabrese Finite differencing second order systems describing black hole spacetimes , 2004, gr-qc/0410062.

[13]  D. Meier Constrained Transport Algorithms for Numerical Relativity. I. Development of a Finite-Difference Scheme , 2003, astro-ph/0312052.

[14]  Hyperbolic tetrad formulation of the Einstein equations for numerical relativity , 2003 .

[15]  Rodolfo Gambini,et al.  Consistent and mimetic discretizations in general relativity , 2004, gr-qc/0404052.

[16]  Finding apparent horizons and other 2-surfaces of constant expansion , 2003, gr-qc/0306006.

[17]  J. Bardeen,et al.  Hyperbolic tetrad formulation of the Einstein equations for numerical relativity , 2003, gr-qc/0301072.

[18]  Harmonic coordinate method for simulating generic singularities , 2001, gr-qc/0110013.

[19]  E. Seidel,et al.  Gauge conditions for long-term numerical black hole evolutions without excision , 2002, gr-qc/0206072.

[20]  S. Bonazzola,et al.  Constrained scheme for the Einstein equations based on the Dirac gauge and spherical coordinates , 2003, gr-qc/0307082.

[21]  A scheme to numerically evolve data for the conformal Einstein equation , 1999, gr-qc/9903088.

[22]  A cure for unstable numerical evolutions of single black holes: adjusting the standard ADM equations , 2001, gr-qc/0103099.

[23]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[24]  Helmut Friedrich,et al.  Hyperbolic reductions for Einstein's equations , 1996 .

[25]  A. Schett Corrigendum: “Properties of the Taylor series expansion coefficients of the Jacobian elliptic functions” (Math. Comp. 30 (1976), no. 133, 143–147) , 1977 .

[26]  F. Pretorius Numerical simulations of gravitational collapse , 2002 .

[27]  Symmetric hyperbolicity and consistent boundary conditions for second-order Einstein equations , 2004, gr-qc/0403019.

[28]  H. Friedrich The asymptotic characteristic initial value problem for Einstein’s vacuum field equations as an initial value problem for a first-order quasilinear symmetric hyperbolic system , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[29]  J. Bardeen,et al.  Erratum: Hyperbolic tetrad formulation of the Einstein equations for numerical relativity[Phys. Rev. D 67, 084017 (2003)] , 2005 .

[30]  S. Shapiro,et al.  On the numerical integration of Einstein's field equations , 1998, gr-qc/9810065.

[31]  E. Seidel,et al.  SYMMETRY WITHOUT SYMMETRY: NUMERICAL SIMULATION OF AXISYMMETRIC SYSTEMS USING CARTESIAN GRIDS , 1999 .

[32]  Luis Lehner,et al.  Numerical relativity: a review , 2001 .

[33]  Masaki Sano,et al.  Phase Wave in a Cellular Structure , 1993 .

[34]  Oscar A. Reula Hyperbolic Methods for Einstein’s Equations , 1998, Living reviews in relativity.

[35]  Numerical Relativity with the Conformal Field Equations , 2002, gr-qc/0204057.

[36]  Jonathan Thornburg,et al.  A Fast Apparent‐Horizon Finder for 3‐Dimensional Cartesian Grids in Numerical Relativity , 2003, gr-qc/0306056.

[37]  Adalbert Kerber,et al.  The Cauchy Problem , 1984 .

[38]  H. Friedrich On the regular and the asymptotic characteristic initial value problem for Einstein’s vacuum field equations , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[39]  C. Gundlach,et al.  Symmetric hyperbolic form of systems of second-order evolution equations subject to constraints , 2004, gr-qc/0402079.

[40]  Optimal constraint projection for hyperbolic evolution systems , 2004, gr-qc/0407011.

[41]  Heinz-Otto Kreiss,et al.  Methods for the approximate solution of time dependent problems , 1973 .

[42]  Dynamical Gauge Conditions for the Einstein Evolution Equations , 2003, gr-qc/0301120.

[43]  Nakamura,et al.  Evolution of three-dimensional gravitational waves: Harmonic slicing case. , 1995, Physical review. D, Particles and fields.

[44]  C. Bona,et al.  General covariant evolution formalism for numerical relativity , 2003 .

[45]  Re-formulating the Einstein equations for stable numerical simulations -F ormulation Problem in Numerical Relativity - , 2002, gr-qc/0209111.

[46]  George F. R. Ellis,et al.  The Large Scale Structure of Space-Time , 2023 .

[47]  Frans Pretorius,et al.  Adaptive mesh refinement for coupled elliptic-hyperbolic systems , 2006, J. Comput. Phys..

[48]  Edward Seidel,et al.  Black Hole Excision for Dynamic Black Holes , 2001 .

[49]  Strongly hyperbolic second order Einstein's evolution equations , 2004, gr-qc/0402123.

[50]  Well-Posed Initial-Boundary Evolution in General Relativity , 2002, gr-qc/0205044.

[51]  Larry Smarr,et al.  Sources of gravitational radiation , 1979 .

[52]  Ken-ichi Oohara,et al.  General Relativistic Collapse to Black Holes and Gravitational Waves from Black Holes , 1987 .

[53]  Seidel,et al.  New formalism for numerical relativity. , 1995, Physical review letters.

[54]  Wolfgang Tichy,et al.  Numerical simulation of orbiting black holes. , 2004, Physical review letters.

[55]  Spherical excision for moving black holes and summation by parts for axisymmetric systems , 2003, gr-qc/0308008.