Numerical relativity using a generalized harmonic decomposition
暂无分享,去创建一个
[1] A numerical relativistic model of a massive particle in orbit near a Schwarzschild black hole , 2003, gr-qc/0301060.
[2] Oscar Reula,et al. Summation by parts and dissipation for domains with excised regions , 2003, gr-qc/0308007.
[3] Initial Data for Numerical Relativity , 2000, Living reviews in relativity.
[4] O. Sarbach,et al. On the well posedness of the Baumgarte-Shapiro-Shibata-Nakamura formulation of Einstein's field equations , 2004, gr-qc/0406003.
[5] H. Kreiss,et al. Some Mathematical and Numerical Questions Connected with First and Second Order Time-Dependent Systems of Partial Differential Equations , 2001, gr-qc/0106085.
[6] Towards the final fate of an unstable black string , 2003, gr-qc/0304085.
[7] 3D simulations of Einstein's equations: Symmetric hyperbolicity, live gauges, and dynamic control of the constraints , 2003, gr-qc/0312001.
[8] Finding apparent horizons in numerical relativity. , 1995, Physical review. D, Particles and fields.
[9] Extended Lifetime in Computational Evolution of Isolated Black Holes , 2003, gr-qc/0307055.
[10] Helmut Friedrich,et al. On the hyperbolicity of Einstein's and other gauge field equations , 1985 .
[11] An axisymmetric gravitational collapse code , 2003, gr-qc/0301006.
[12] Gioel Calabrese. Finite differencing second order systems describing black hole spacetimes , 2004, gr-qc/0410062.
[13] D. Meier. Constrained Transport Algorithms for Numerical Relativity. I. Development of a Finite-Difference Scheme , 2003, astro-ph/0312052.
[14] Hyperbolic tetrad formulation of the Einstein equations for numerical relativity , 2003 .
[15] Rodolfo Gambini,et al. Consistent and mimetic discretizations in general relativity , 2004, gr-qc/0404052.
[16] Finding apparent horizons and other 2-surfaces of constant expansion , 2003, gr-qc/0306006.
[17] J. Bardeen,et al. Hyperbolic tetrad formulation of the Einstein equations for numerical relativity , 2003, gr-qc/0301072.
[18] Harmonic coordinate method for simulating generic singularities , 2001, gr-qc/0110013.
[19] E. Seidel,et al. Gauge conditions for long-term numerical black hole evolutions without excision , 2002, gr-qc/0206072.
[20] S. Bonazzola,et al. Constrained scheme for the Einstein equations based on the Dirac gauge and spherical coordinates , 2003, gr-qc/0307082.
[21] A scheme to numerically evolve data for the conformal Einstein equation , 1999, gr-qc/9903088.
[22] A cure for unstable numerical evolutions of single black holes: adjusting the standard ADM equations , 2001, gr-qc/0103099.
[23] D. Brandt,et al. Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .
[24] Helmut Friedrich,et al. Hyperbolic reductions for Einstein's equations , 1996 .
[25] A. Schett. Corrigendum: “Properties of the Taylor series expansion coefficients of the Jacobian elliptic functions” (Math. Comp. 30 (1976), no. 133, 143–147) , 1977 .
[26] F. Pretorius. Numerical simulations of gravitational collapse , 2002 .
[27] Symmetric hyperbolicity and consistent boundary conditions for second-order Einstein equations , 2004, gr-qc/0403019.
[28] H. Friedrich. The asymptotic characteristic initial value problem for Einstein’s vacuum field equations as an initial value problem for a first-order quasilinear symmetric hyperbolic system , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[29] J. Bardeen,et al. Erratum: Hyperbolic tetrad formulation of the Einstein equations for numerical relativity[Phys. Rev. D 67, 084017 (2003)] , 2005 .
[30] S. Shapiro,et al. On the numerical integration of Einstein's field equations , 1998, gr-qc/9810065.
[31] E. Seidel,et al. SYMMETRY WITHOUT SYMMETRY: NUMERICAL SIMULATION OF AXISYMMETRIC SYSTEMS USING CARTESIAN GRIDS , 1999 .
[32] Luis Lehner,et al. Numerical relativity: a review , 2001 .
[33] Masaki Sano,et al. Phase Wave in a Cellular Structure , 1993 .
[34] Oscar A. Reula. Hyperbolic Methods for Einstein’s Equations , 1998, Living reviews in relativity.
[35] Numerical Relativity with the Conformal Field Equations , 2002, gr-qc/0204057.
[36] Jonathan Thornburg,et al. A Fast Apparent‐Horizon Finder for 3‐Dimensional Cartesian Grids in Numerical Relativity , 2003, gr-qc/0306056.
[37] Adalbert Kerber,et al. The Cauchy Problem , 1984 .
[38] H. Friedrich. On the regular and the asymptotic characteristic initial value problem for Einstein’s vacuum field equations , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[39] C. Gundlach,et al. Symmetric hyperbolic form of systems of second-order evolution equations subject to constraints , 2004, gr-qc/0402079.
[40] Optimal constraint projection for hyperbolic evolution systems , 2004, gr-qc/0407011.
[41] Heinz-Otto Kreiss,et al. Methods for the approximate solution of time dependent problems , 1973 .
[42] Dynamical Gauge Conditions for the Einstein Evolution Equations , 2003, gr-qc/0301120.
[43] Nakamura,et al. Evolution of three-dimensional gravitational waves: Harmonic slicing case. , 1995, Physical review. D, Particles and fields.
[44] C. Bona,et al. General covariant evolution formalism for numerical relativity , 2003 .
[45] Re-formulating the Einstein equations for stable numerical simulations -F ormulation Problem in Numerical Relativity - , 2002, gr-qc/0209111.
[46] George F. R. Ellis,et al. The Large Scale Structure of Space-Time , 2023 .
[47] Frans Pretorius,et al. Adaptive mesh refinement for coupled elliptic-hyperbolic systems , 2006, J. Comput. Phys..
[48] Edward Seidel,et al. Black Hole Excision for Dynamic Black Holes , 2001 .
[49] Strongly hyperbolic second order Einstein's evolution equations , 2004, gr-qc/0402123.
[50] Well-Posed Initial-Boundary Evolution in General Relativity , 2002, gr-qc/0205044.
[51] Larry Smarr,et al. Sources of gravitational radiation , 1979 .
[52] Ken-ichi Oohara,et al. General Relativistic Collapse to Black Holes and Gravitational Waves from Black Holes , 1987 .
[53] Seidel,et al. New formalism for numerical relativity. , 1995, Physical review letters.
[54] Wolfgang Tichy,et al. Numerical simulation of orbiting black holes. , 2004, Physical review letters.
[55] Spherical excision for moving black holes and summation by parts for axisymmetric systems , 2003, gr-qc/0308008.