Morphological and cytoskeleton changes in cells after EMT

[1]  Yuhe Huang,et al.  The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis , 2022, Journal of Hematology & Oncology.

[2]  Zhe Zhang,et al.  Epithelial–mesenchymal transition: The history, regulatory mechanism, and cancer therapeutic opportunities , 2022, MedComm.

[3]  Santanu Palchaudhuri,et al.  Epithelial–mesenchymal transition and its transcription factors , 2021, Bioscience reports.

[4]  M. Jolly,et al.  Biophysical and biochemical attributes of hybrid epithelial/mesenchymal phenotypes , 2021, Physical biology.

[5]  N. Barlev,et al.  Proteomic Analysis of Zeb1 Interactome in Breast Carcinoma Cells , 2021, Molecules.

[6]  T. Tan,et al.  Cytoskeletal Dynamics in Epithelial-Mesenchymal Transition: Insights into Therapeutic Targets for Cancer Metastasis , 2021, Cancers.

[7]  D. Ribatti,et al.  Epithelial-Mesenchymal Transition in Cancer: A Historical Overview , 2020, Translational oncology.

[8]  Raymond B. Runyan,et al.  Guidelines and definitions for research on epithelial–mesenchymal transition , 2020, Nature Reviews Molecular Cell Biology.

[9]  Shu Shun Li,et al.  Beta3-Tubulin Is Critical for Microtubule Dynamics, Cell Cycle Regulation, and Spontaneous Release of Microvesicles in Human Malignant Melanoma Cells (A375) , 2020, International journal of molecular sciences.

[10]  G. Sethi,et al.  The E-Cadherin and N-Cadherin Switch in Epithelial-to-Mesenchymal Transition: Signaling, Therapeutic Implications, and Challenges , 2019, Cells.

[11]  F. Ataullakhanov,et al.  Fine structure and dynamics of EB3 binding zones on microtubules in fibroblast cells , 2019, Molecular biology of the cell.

[12]  H. Duan,et al.  FAK regulates epithelial-mesenchymal transition in adenomyosis , 2018, Molecular medicine reports.

[13]  W. Brieher,et al.  The actin filament bundling protein α-actinin-4 actually suppresses actin stress fibers by permitting actin turnover , 2018, The Journal of Biological Chemistry.

[14]  Alexa Kiss,et al.  Neuronal Growth Cone Size-Dependent and -Independent Parameters of Microtubule Polymerization , 2018, Front. Cell. Neurosci..

[15]  M. Hung,et al.  Actin cytoskeleton remodeling drives epithelial‐mesenchymal transition for hepatoma invasion and metastasis in mice , 2018, Hepatology.

[16]  Joseph Atherton,et al.  Tubulin isoform composition tunes microtubule dynamics , 2017, Molecular biology of the cell.

[17]  Scott Forth,et al.  Mutations in Human Tubulin Proximal to the Kinesin-Binding Site Alter Dynamic Instability at Microtubule Plus- and Minus-Ends. , 2016, Developmental cell.

[18]  T. Vomastek,et al.  Cell polarity signaling in the plasticity of cancer cell invasiveness , 2016, Oncotarget.

[19]  D. Abraham,et al.  Partially Evoked Epithelial-Mesenchymal Transition (EMT) Is Associated with Increased TGFβ Signaling within Lesional Scleroderma Skin , 2015, PloS one.

[20]  L. Blanchoin,et al.  Tau co-organizes dynamic microtubule and actin networks , 2015, Scientific Reports.

[21]  A. Carlsson,et al.  How capping protein enhances actin filament growth and nucleation on biomimetic beads , 2015, Physical biology.

[22]  S. Lim,et al.  Understanding the Roles of FAK in Cancer , 2015, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[23]  E. Meijering,et al.  Quantitative imaging of focal adhesion dynamics and their regulation by HGF and Rap1 signaling. , 2015, Experimental cell research.

[24]  Yun Liu,et al.  Whole DNA methylome profiling in lung cancer cells before and after epithelial-to-mesenchymal transition , 2014, Diagnostic Pathology.

[25]  Samy Lamouille,et al.  Molecular mechanisms of epithelial–mesenchymal transition , 2014, Nature Reviews Molecular Cell Biology.

[26]  Eshel Ben-Jacob,et al.  MicroRNA-based regulation of epithelial–hybrid–mesenchymal fate determination , 2013, Proceedings of the National Academy of Sciences.

[27]  Denis Wirtz,et al.  Predicting how cells spread and migrate , 2013, Cell Adhesion & Migration.

[28]  Denis Wirtz,et al.  Focal adhesion size uniquely predicts cell migration , 2013, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[29]  Paulo A. S. Nuin,et al.  EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer , 2012, BMC Cancer.

[30]  J. Srivastava,et al.  Dynamic actin remodeling during epithelial–mesenchymal transition depends on increased moesin expression , 2011, Molecular biology of the cell.

[31]  I. Kaverina,et al.  Regulation of cell migration by dynamic microtubules. , 2011, Seminars in cell & developmental biology.

[32]  Tyler E. Miller,et al.  Myosin II isoform switching mediates invasiveness after TGF-β–induced epithelial–mesenchymal transition , 2011, Proceedings of the National Academy of Sciences.

[33]  Hailing Yang,et al.  Class III β-Tubulin Counteracts the Ability of Paclitaxel to Inhibit Cell Migration , 2011, Oncotarget.

[34]  Andrei V Bakin,et al.  Role of β5-integrin in epithelial-mesenchymal transition in response to TGF-β , 2010, Cell cycle.

[35]  G. Borisy,et al.  Migration and actin protrusion in melanoma cells are regulated by EB1 protein. , 2009, Cancer letters.

[36]  I. A. Vorob’ev,et al.  Radial-organized microtubules provide cell shape support and more effective intercellular transport then free microtubules , 2009, Cell and Tissue Biology.

[37]  Kurt Wüthrich,et al.  An EB1-Binding Motif Acts as a Microtubule Tip Localization Signal , 2009, Cell.

[38]  Robert A. Weinberg,et al.  The basics of epithelial-mesenchymal transition. , 2009, The Journal of clinical investigation.

[39]  I. Maly,et al.  Microtubule length and dynamics: Boundary effect and properties of extended radial array , 2008, Cell and Tissue Biology.

[40]  Benjamin Geiger,et al.  Anomalous Features of EMT during Keratinocyte Transformation , 2008, PloS one.

[41]  T. Morita,et al.  Dual roles of myocardin-related transcription factors in epithelial–mesenchymal transition via slug induction and actin remodeling , 2007, The Journal of cell biology.

[42]  H. Cho,et al.  Rho activation is required for transforming growth factor‐β‐induced epithelial‐mesenchymal transition in lens epithelial cells , 2007, Cell Biology International.

[43]  N. Galjart,et al.  Role of CLASP2 in Microtubule Stabilization and the Regulation of Persistent Motility , 2006, Current Biology.

[44]  Leslie Wilson,et al.  βIII-Tubulin Induces Paclitaxel Resistance in Association with Reduced Effects on Microtubule Dynamic Instability* , 2005, Journal of Biological Chemistry.

[45]  N. Galjart,et al.  CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex , 2005, The Journal of cell biology.

[46]  Gábor Sirokmány,et al.  Central role for Rho in TGF-β1-induced α-smooth muscle actin expression during epithelial-mesenchymal transition , 2003 .

[47]  R. Himes,et al.  Intrinsically Slow Dynamic Instability of HeLa Cell Microtubules in Vitro * , 2002, The Journal of Biological Chemistry.

[48]  C. Waterman-Storer,et al.  Dual-wavelength fluorescent speckle microscopy reveals coupling of microtubule and actin movements in migrating cells , 2002, The Journal of cell biology.

[49]  V. Malikov,et al.  Self-organization of a radial microtubule array by dynein-dependent nucleation of microtubules , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Chris I. De Zeeuw,et al.  CLASPs Are CLIP-115 and -170 Associating Proteins Involved in the Regional Regulation of Microtubule Dynamics in Motile Fibroblasts , 2001, Cell.

[51]  M. Carlier,et al.  Control of Actin Dynamics in Cell Motility , 1999, The Journal of Biological Chemistry.

[52]  E. Salmon,et al.  Actomyosin-based Retrograde Flow of Microtubules in the Lamella of Migrating Epithelial Cells Influences Microtubule Dynamic Instability and Turnover and Is Associated with Microtubule Breakage and Treadmilling , 1997, The Journal of cell biology.

[53]  G. Borisy,et al.  Self-centring activity of cytoplasm , 1997, Nature.

[54]  G. Gundersen,et al.  Low concentrations of nocodazole interfere with fibroblast locomotion without significantly affecting microtubule level: implications for the role of dynamic microtubules in cell locomotion. , 1995, Journal of cell science.

[55]  Elly M. Tanaka,et al.  The role of microtubule dynamics in growth cone motility and axonal growth , 1995, The Journal of cell biology.

[56]  D. Panda,et al.  Microtubule dynamics in vitro are regulated by the tubulin isotype composition. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[57]  R. Grosse,et al.  Pharmacological inhibition of actin assembly to target tumor cell motility. , 2014, Reviews of physiology, biochemistry and pharmacology.

[58]  Gábor Sirokmány,et al.  Central role for Rho in TGF-beta1-induced alpha-smooth muscle actin expression during epithelial-mesenchymal transition. , 2003, American journal of physiology. Renal physiology.

[59]  H. Moses,et al.  Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. , 2001, Molecular biology of the cell.