Optical Phase locking techniques: an overview and a novel method based on single side sub-carrier modulation.

A short overview on Optical Phase locking techniques and a detailed description of the Phase Locking technique based on Sub-Carriers modulation is presented. Furthermore, a novel Single Side Sub-Carrier-based Optical Phase Locked Loop (SS-SC-OPLL), with off the shelf optical components, is also presented and experimentally demonstrated. Our new method, based on continuous wave semiconductor lasers and optical single side sub-carrier modulation using QPSK LiNbO(3) modulator, allows a practical implementation with better performance with respect to the previously proposed OPLL circuits, and permits an easy use in real time WDM signal coherent demodulation.

[1]  L. Kazovsky Decision-driven phase-locked loop for optical homodyne receivers: Performance analysis and laser linewidth requirements , 1985, IEEE Transactions on Electron Devices.

[2]  Joseph M. Kahn,et al.  Optical phaselock receiver with multigigahertz signal bandwidth , 1989 .

[3]  L. H. Enloe,et al.  Laser phase-locked loop , 1965 .

[4]  K. Noguchi,et al.  10 Gbit/s optical PSK homodyne transmission experiments using external cavity DFB LDs , 1990 .

[5]  T. Hodgkinson Costas loop analysis for coherent optical receivers , 1986 .

[6]  Walter R. Leeb,et al.  Costas loop self-homodyne experiment for a diode laser receiver , 1986 .

[7]  Arpad L. Scholtz,et al.  Frequency synchronization and phase locking of CO2 lasers , 1982 .

[8]  Leonid G. Kazovsky,et al.  A 1320-nm experimental optical phase-locked loop: performance investigation and PSK homodyne experiments at 140 Mb/s and 2 Gb/s , 1990 .

[9]  Arpad L. Scholtz,et al.  Infra-red homodyne receiver with acousto-optically controlled local oscillator , 1983 .

[10]  V. Chan,et al.  Local-oscillator excess-noise suppression for homodyne and heterodyne detection. , 1983, Optics letters.

[11]  S. Camatel,et al.  A novel optical phase locked loop architecture based on sub-carrier modulation , 2004, Optical Fiber Communication Conference, 2004. OFC 2004.

[12]  Steven K. Korotky,et al.  1 Gbit/s PSK homodyne transmission system using phase-locked semiconductor lasers , 1989 .

[13]  D. Malyon Digital fibre transmission using optical homodyne detection , 1984 .

[14]  Leonid G. Kazovsky,et al.  Phase- and polarization-diversity coherent optical techniques , 1989 .

[15]  Leonid G. Kazovsky,et al.  Balanced phase-locked loops for optical homodyne receivers: Performance analysis, design considerations, and laser linewidth requirements , 1986 .

[16]  Arpad L. Scholtz,et al.  Costas Loop Experiments for a 10.6 µm Communications Receiver , 1983, IEEE Trans. Commun..

[17]  S. Camatel,et al.  2.5-Gb/s BPSK Ultradense WDM Homodyne Coherent Detection Using a Subcarrier-Based Optical Phase-Locked Loop , 2006, IEEE Photonics Technology Letters.

[18]  Georg Fischer,et al.  A 700 Mbit/s PSK Optical Homodyne System with Balanced Phase Locked Loop , 1988 .

[19]  Joseph M. Kahn,et al.  Carrier synchronization for homodyne and heterodyne detection of optical quadriphase-shift keying , 1992 .

[20]  D. J. Malyon,et al.  Semiconductor laser homodyne optical phase-locked-loop , 1986 .

[21]  H. Mawatari,et al.  10 Gbit/s optical BPSK homodyne detection experiment with solitary DFB laser diodes , 1995 .

[22]  K. Sato,et al.  PSK optical homodyne detection using external cavity laser diodes in Costas loop , 1990, IEEE Photonics Technology Letters.

[23]  S. Camatel,et al.  Optical phase-locked loop for coherent detection optical receiver , 2004 .

[24]  S. Camatel,et al.  Homodyne coherent detection of ASK and PSK signals performed by a subcarrier optical phase-locked loop , 2006, IEEE Photonics Technology Letters.

[25]  S. Norimatsu,et al.  PLL propagation delay-time influence on linewidth requirements of optical PSK homodyne detection , 1991 .

[26]  T. Kane,et al.  Fast frequency tuning and phase locking of diode-pumped Nd:YAG ring lasers. , 1988, Optics letters.

[27]  B. E. Daymond-John,et al.  PSK homodyne receiver sensitivity measurements at 1.5 μm , 1983 .