Initial Results of the Relative Humidity Observations by MEDA Instrument Onboard the Mars 2020 Perseverance Rover

The Mars 2020 mission rover “Perseverance”, launched on 30 July 2020 by NASA, landed successfully 18 February 2021 at Jezero Crater, Mars (Lon. E 77.4509° Lat. N 18.4446°). The landing took place at Mars solar longitude Ls = 5.2°, close to start of the northern spring. Perseverance's payload includes the relative humidity sensor MEDA HS (Mars Environmental Dynamics Analyzer Humidity Sensor), which operations, performance, and the first observations from sol 80 to sol 410 (Ls 44°–210°) of Perseverance's operations we describe. The relative humidity measured by MEDA‐HS is reliable from late night hours to few tens of minutes after sunrise when the measured humidity is greater than 2% (referenced to sensor temperature). Data delivered to the Planetary Data System include relative humidity, sensor temperature, uncertainty of relative humidity, and volume mixing ratio (VMR). VMR is calculated using the MEDA‐PS pressure sensor values. According to observations, nighttime absolute humidity follows a seasonal curve in which release of water vapor from the northern cap with advancing northern spring and summer is visible. At ground level, frost conditions may have been reached a few times during this season (Ls 44°–210°). Volume mixing ratio values show a declining diurnal trend from the midnight toward the morning suggesting adsorption of humidity into the ground. Observations are compared with an adsorptive single‐column model, which complies with observations and confirms adsorption. The model allows estimating daytime VMR levels. Short‐term subhour timescales show large temporal fluctuations in humidity, which suggest vertical and spatial advection.

[1]  M. Lemmon,et al.  Near Surface Atmospheric Temperatures at Jezero From Mars 2020 MEDA Measurements , 2023, Journal of Geophysical Research: Planets.

[2]  J. Johnson,et al.  Surface Energy Budget, Albedo, and Thermal Inertia at Jezero Crater, Mars, as Observed From the Mars 2020 MEDA Instrument , 2023, Journal of Geophysical Research: Planets.

[3]  K. Herkenhoff,et al.  Winds at the Mars 2020 Landing Site. 2. Wind Variability and Turbulence , 2022, Journal of geophysical research. Planets.

[4]  K. Herkenhoff,et al.  Winds at the Mars 2020 Landing Site: 1. Near‐Surface Wind Patterns at Jezero Crater , 2022, Journal of Geophysical Research: Planets.

[5]  M. Genzer,et al.  MEDA HS: Relative humidity sensor for the Mars 2020 Perseverance rover , 2022, Planetary and Space Science.

[6]  M. Lemmon,et al.  Dust, Sand, and Winds Within an Active Martian Storm in Jezero Crater , 2022, Geophysical research letters.

[7]  H. Savijärvi,et al.  Surface energy budget at curiosity through observations and column modeling , 2022, Icarus.

[8]  D. Banfield,et al.  Seasonal Variability of the Daytime and Nighttime Atmospheric Turbulence Experienced by InSight on Mars , 2021, Geophysical Research Letters.

[9]  Linda C. Kah,et al.  Perseverance rover reveals an ancient delta-lake system and flood deposits at Jezero crater, Mars , 2021, Science.

[10]  Isabel Pérez-Grande,et al.  Thermal calibration of the MEDA-TIRS radiometer onboard NASA's Perseverance rover , 2021 .

[11]  F. Ferri,et al.  The Mars Environmental Dynamics Analyzer, MEDA. A Suite of Environmental Sensors for the Mars 2020 Mission , 2021, Space Science Reviews.

[12]  A. Harri,et al.  Water vapor adsorption on Mars , 2021 .

[13]  F. Lefévre,et al.  Multi‐Annual Monitoring of the Water Vapor Vertical Distribution on Mars by SPICAM on Mars Express , 2020, Journal of Geophysical Research: Planets.

[14]  Yoo-Kyung Lee,et al.  Distinct Microbial Communities in Adjacent Rock and Soil Substrates on a High Arctic Polar Desert , 2021, Frontiers in Microbiology.

[15]  A. Harri,et al.  Meteorological Predictions for Mars 2020 Perseverance Rover Landing Site at Jezero Crater , 2020, Space science reviews.

[16]  S. Crewell,et al.  Water vapor variability in the Atacama Desert during the 20th century , 2020 .

[17]  M. Lemmon,et al.  Near-surface atmospheric water vapor enhancement at the Mars Phoenix lander site , 2020 .

[18]  A. Harri,et al.  Humidity observations and column simulations for a warm period at the Mars Phoenix lander site: Constraining the adsorptive properties of regolith , 2020, Icarus.

[19]  A. Harri,et al.  Curiosity observations and column model integrations for a martian global dust event , 2020 .

[20]  F. Daerden,et al.  Water Vapor Vertical Profiles on Mars in Dust Storms Observed by TGO/NOMAD , 2019, Journal of Geophysical Research: Planets.

[21]  A. Zent,et al.  Relative Humidity on Mars: New Results From the Phoenix TECP Sensor , 2019, Journal of geophysical research. Planets.

[22]  M. Lemmon,et al.  Effects of the MY34/2018 Global Dust Storm as Measured by MSL REMS in Gale Crater , 2019, Journal of geophysical research. Planets.

[23]  A. Harri,et al.  Water vapor mixing ratios and air temperatures for three martian years from Curiosity , 2019, Icarus.

[24]  J. Schofield,et al.  Hydrogen escape from Mars enhanced by deep convection in dust storms , 2018 .

[25]  Lori Neary,et al.  The climatology of carbon monoxide and water vapor on Mars as observed by CRISM and modeled by the GEM-Mars general circulation model , 2018 .

[26]  Jeffrey R. Johnson,et al.  Retrieval of water vapor column abundance and aerosol properties from ChemCam passive sky spectroscopy , 2017, Icarus.

[27]  A. Spiga,et al.  The water cycle and regolith-atmosphere interaction at Gale crater, Mars , 2017 .

[28]  M. D. Smith,et al.  The Modern Near-Surface Martian Climate: A Review of In-situ Meteorological Data from Viking to Curiosity , 2017 .

[29]  Germán David Mendoza Martínez,et al.  Likely frost events at Gale crater: Analysis from MSL/REMS measurements , 2016 .

[30]  A. Harri,et al.  The diurnal water cycle at Curiosity: Role of exchange with the regolith , 2016 .

[31]  R. Vicuña,et al.  Discovery and microbial content of the driest site of the hyperarid Atacama Desert, Chile. , 2015, Environmental microbiology reports.

[32]  A. McEwen,et al.  Transient liquid water and water activity at Gale crater on Mars , 2015 .

[33]  A. Harri,et al.  Mars Science Laboratory diurnal moisture observations and column simulations , 2015 .

[34]  M. Hecht,et al.  A revised calibration function and results for the Phoenix mission TECP relative humidity sensor , 2014 .

[35]  R. Haberle,et al.  Mars Science Laboratory relative humidity observations: Initial results , 2014, Journal of geophysical research. Planets.

[36]  E. Sebastián,et al.  REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover , 2012 .

[37]  F Forget,et al.  Evidence of Water Vapor in Excess of Saturation in the Atmosphere of Mars , 2011, Science.

[38]  V. Formisano,et al.  Observations of water vapour and carbon monoxide in the Martian atmosphere with the SWC of PFS/MEX , 2011 .

[39]  M. Mellon,et al.  Initial results from the thermal and electrical conductivity probe (TECP) on Phoenix , 2010 .

[40]  D. Ming,et al.  H2O at the Phoenix Landing Site , 2009, Science.

[41]  F. Daerden,et al.  Mars Water-Ice Clouds and Precipitation , 2009, Science.

[42]  Scott L. Murchie,et al.  Compact Reconnaissance Imaging Spectrometer observations of water vapor and carbon monoxide , 2009 .

[43]  W. Otten,et al.  Microbial distribution in soils: physics and scaling , 2008 .

[44]  T. Encrenaz,et al.  OMEGA/Mars Express: South Pole Region, water vapor daily variability , 2008 .

[45]  C. McKay,et al.  Relative humidity patterns and fog water precipitation in the Atacama Desert and biological implications , 2007 .

[46]  Thierry Fouchet,et al.  Martian water vapor: Mars Express PFS/LW observations , 2007 .

[47]  Raymond E. Arvidson,et al.  Mossbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity's journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits , 2006 .

[48]  A. Fedorova,et al.  Mars water vapor abundance from SPICAM IR spectrometer: Seasonal and geographic distributions , 2006 .

[49]  D. Ming,et al.  Mössbauer mineralogy of rock, soil, and dust at Gusev crater, Mars: Spirit's journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia Hills , 2006 .

[50]  Jean-Pierre Bibring,et al.  A mapping of martian water sublimation during early northern summer using OMEGA/Mars Express , 2005 .

[51]  Anna Fedorova,et al.  MAWD observations revisited: seasonal behavior of water vapor in the martian atmosphere , 2004 .

[52]  Michael D. Smith Interannual variability in TES atmospheric observations of Mars during 1999–2003 , 2004 .

[53]  Christopher P. McKay,et al.  Mars-Like Soils in the Atacama Desert, Chile, and the Dry Limit of Microbial Life , 2003, Science.

[54]  D. Hunten,et al.  Mars atmospheric water vapor abundance: 1996–1997 , 2003 .

[55]  Michael D. Smith The annual cycle of water vapor on Mars as observed by the Thermal Emission Spectrometer , 2002 .

[56]  John C. Pearl,et al.  Thermal Emission Spectrometer results: Mars atmospheric thermal structure and aerosol distribution , 2001 .

[57]  T. Encrenaz,et al.  The water vapor vertical distribution on mars from millimeter transitions of HDO and H218O , 2001 .

[58]  David E. Smith,et al.  The global topography of Mars and implications for surface evolution. , 1999, Science.

[59]  B. Jakosky,et al.  The Mars Water Cycle: Determining the Role of Exchange with the Regolith☆ , 1997 .

[60]  D. Hunten,et al.  Martian water vapor, 1988–1995 , 1996 .

[61]  Duane O. Muhleman,et al.  WATER VAPOR SATURATION AT LOW ALTITUDES AROUND MARS APHELION : A KEY TO MARS CLIMATE ? , 1996 .

[62]  T. Encrenaz,et al.  A tentative detection of the 183-GHz water vapor line in the martian atmosphere: Constraints upon the H2O abundance and vertical distribution , 1993 .

[63]  Tero Siili,et al.  The Martian slope winds and the nocturnal PBL jet. , 1993 .

[64]  E. Iso,et al.  Measurement Uncertainty and Probability: Guide to the Expression of Uncertainty in Measurement , 1995 .

[65]  D. Muhleman,et al.  Mapping Mars water vapor with the Very Large Array , 1992 .

[66]  D. L. Anderson,et al.  Thermal emission spectrometer experiment: Mars Observer mission , 1992 .

[67]  R. Haberle,et al.  The seasonal behavior of water on Mars , 1992 .

[68]  B. Jakosky The seasonal cycle of water on Mars , 1985 .

[69]  C. B. Farmer,et al.  The seasonal and global behavior of water vapor in the Mars atmosphere: Complete global results of the Viking Atmospheric Water Detector Experiment , 1982 .

[70]  E. Friedmann,et al.  Endolithic Microorganisms in the Antarctic Cold Desert , 1982, Science.

[71]  Arden L. Buck,et al.  New Equations for Computing Vapor Pressure and Enhancement Factor , 1981 .

[72]  D. W. Davies,et al.  Mars: Water vapor observations from the Viking orbiters , 1977 .

[73]  T. E. Burke,et al.  Atmospheric and surface properties of Mars obtained by infrared spectroscopy on Mariner 9. , 1973 .

[74]  D. J. Milton Water and processes of degradation in the Martian landscape , 1973 .

[75]  H. Spinrad,et al.  Letter to the Editor: the Detection of Water Vapor on Mars. , 1963 .