Acrobatics for thermal emission using metastructures

In high temperature and vacuum applications, for which heat transfer is predominantly by radiation, the material's surface texture is of substantial importance. Control of thermal emission is of crucial concern in the design of infrared sources, in electronic chip coolants, in high-efficiency photovoltaic cells, and in solar energy conversion. Thermal emission has been shown to be modified by utilizing the high density of states of surface waves (surface plasmon polaritons and surface phonon polaritons) and their long-range propagation. We present subwavelength structures - metastructures supporting surface waves for obtaining polarization manipulation of thermal emission, extraordinary coherent thermal radiation, bandgap in the spectral emission, and a broadband infrared absorption. A spin-dependent dispersion splitting was obtained in a structure consisting of a coupled thermal antenna array. The effect is due to a spinorbit interaction resulting from the dynamics of the surface waves propagating along the structure whose local anisotropy axis is rotated in space. The dispersion splitting due to the spin-orbit coupling is also known as the key feature in such remarkable effects as the Rashba splitting and the spin-Hall effect, which indicates the generic nature of the discussed phenomenon. The observation of the spin-symmetry breaking in thermal radiation paves the way to manipulate spontaneous emission with the photons' intrinsic degree of freedom and provides the basis for future spinoptics devices.

[1]  Jean-Jacques Greffet,et al.  Coherent spontaneous emission of light by thermal sources , 2004 .

[2]  Claude Amra,et al.  Index determination of opaque and semitransparent metallic films: application to light absorbers. , 2002, Applied optics.

[3]  Makoto Okada,et al.  Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities , 2008 .

[4]  Tero Setälä,et al.  Degree of polarization in near fields of thermal sources: effects of surface waves. , 2002, Physical review letters.

[5]  Geometrodynamics of polarized light: Berry phase and spin Hall effect in a gradient-index medium , 2009, 0903.1910.

[6]  S. M. Rytov,et al.  Principles of statistical radiophysics , 1987 .

[7]  Zhiping Zhou,et al.  Strong enhancement of erbium ion emission by a metallic double grating , 2006 .

[8]  M. D. Coutts,et al.  Optical Properties of Granular Silver and Gold Films , 1973 .

[9]  Erez Hasman,et al.  Manipulation of the Pancharatnam phase in vectorial vortices. , 2006, Optics express.

[10]  Erez Hasman,et al.  Observation of optical spin symmetry breaking in nanoapertures. , 2009, Nano letters.

[11]  R. Carminati,et al.  Near-field spectral effects due to electromagnetic surface excitations , 2000, Physical review letters.

[12]  Kitson,et al.  Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings. , 1996, Physical review. B, Condensed matter.

[13]  B. A. Garetz,et al.  Angular doppler effect , 1981 .

[14]  R. Carminati,et al.  Coherent emission of light by thermal sources , 2002, Nature.

[15]  E Hasman,et al.  Observation of the spin-based plasmonic effect in nanoscale structures. , 2008, Physical review letters.

[16]  Kitson,et al.  Surface-plasmon energy gaps and photoluminescence. , 1995, Physical review. B, Condensed matter.

[17]  G. Biener,et al.  Thermal image encryption obtained with a SiO2 space-variant subwavelength grating supporting surface phonon-polaritons. , 2005, Optics letters.

[18]  S G Lipson,et al.  Berry's phase in optical interferometry: a simple derivation. , 1990, Optics letters.

[19]  Wolfgang Ruppel,et al.  Optical and electrical properties of black gold layers in the far infrared , 1999 .

[20]  H. D. Castillo,et al.  Composite infrared bolometers with Si3N4 micromesh absorbers. , 1997, Applied optics.

[21]  E. Wolf Non-cosmological redshifts of spectral lines , 1987, Nature.

[22]  Erez Hasman,et al.  Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves , 2007 .

[23]  Onur Hosten,et al.  Observation of the Spin Hall Effect of Light via Weak Measurements , 2008, Science.

[24]  R. Carminati,et al.  Near-Field Effects in Spatial Coherence of Thermal Sources , 1999 .

[25]  K. Bliokh,et al.  Geometrodynamics of spinning light , 2008, 0810.2136.

[26]  Schatz,et al.  Surface-enhanced second-harmonic diffraction: Experimental investigation of selective enhancement. , 1996, Physical review. B, Condensed matter.

[27]  A. Kocabas,et al.  Plasmonic band gap structures for surface-enhanced Raman scattering. , 2008, Optics express.

[28]  Liberman,et al.  Optical Magnus effect. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[29]  Wolfgang Müller-Hirsch,et al.  Near-field heat transfer in a scanning thermal microscope. , 2005, Physical review letters.

[30]  Ronald M. Gilgenbach,et al.  Microwave absorption on a thin film , 2003 .

[31]  Space-variant polarization manipulation of a thermal emission by a SiO/sub 2/ subwavelength grating supporting surface phonon-polariton , 2005 .

[32]  Bong Jae Lee,et al.  Coherent thermal emission from one-dimensional photonic crystals , 2005 .

[33]  L. Hove,et al.  The Occurrence of Singularities in the Elastic Frequency Distribution of a Crystal , 1953 .

[34]  A. Ignatiev,et al.  Influence of microstructure on the optical properties of particulate materials: Gold black , 1978 .

[35]  Erez Hasman,et al.  Slow surface phonon polaritons for sensing in the midinfrared spectrum , 2009 .

[36]  E. Hasman,et al.  Geometric doppler effect: spin-split dispersion of thermal radiation. , 2010, Physical review letters.

[37]  E. Hasman,et al.  Rashba-like spin degeneracy breaking in coupled thermal antenna lattices. , 2011, Optics express.

[38]  G. Biener,et al.  Extraordinary Coherent Thermal Emission From SiC Due to Coupled Resonant Cavities , 2008 .

[39]  Erez Hasman,et al.  Highly coherent thermal emission obtained by plasmonic bandgap structures , 2008 .

[40]  John B. Pendry,et al.  Radiative exchange of heat between nanostructures , 1999 .

[41]  G. Biener,et al.  Chapter 4 – Space-variant polarization manipulation , 2005 .

[42]  Bong Jae Lee,et al.  Coherent Thermal Emission From Modified Periodic Multilayer Structures , 2007 .

[43]  G. Niklasson Optical properties of gas‐evaporated metal particles: Effects of a fractal structure , 1987 .

[44]  Jean-Jacques Greffet,et al.  Thermal radiation scanning tunnelling microscopy , 2006, Nature.

[45]  Jay N. Zemel,et al.  Organ pipe radiant modes of periodic micromachined silicon surfaces , 1986, Nature.

[46]  Erez Hasman,et al.  Metallic subwavelength structures for a broadband infrared absorption control. , 2007, Optics letters.

[47]  E. Hasman,et al.  Plasmonic Aharonov-Bohm effect: Optical spin as the magnetic flux parameter , 2010 .

[48]  Erez Hasman,et al.  Coriolis effect in optics: unified geometric phase and spin-Hall effect. , 2008, Physical review letters.

[49]  E. Hasman,et al.  Bandgap structure of thermally excited surface phonon polaritons , 2010 .

[50]  Luciana Vaccaro,et al.  A virtual optical probe based on localized Surface Plasmon Polaritons. , 2005, Optics express.

[51]  A. Bouhelier,et al.  Submicrometer in-plane integrated surface plasmon cavities. , 2007, Nano letters.