Ultrathin Films of Single‐Walled Carbon Nanotubes for Electronics and Sensors: A Review of Fundamental and Applied Aspects

Ultrathin films of single‐walled carbon nanotubes (SWNTs) represent an attractive, emerging class of material, with properties that can approach the exceptional electrical, mechanical, and optical characteristics of individual SWNTs, in a format that, unlike isolated tubes, is readily suitable for scalable integration into devices. These features suggest the potential for realistic applications as conducting or semiconducting layers in diverse types of electronic, optoelectronic and sensor systems. This article reviews recent advances in assembly techniques for forming such films, modeling and experimental work that reveals their collective properties, and engineering aspects of implementation in sensors and in electronic devices and circuits with various levels of complexity. A concluding discussion provides some perspectives on possibilities for future work in fundamental and applied aspects.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Gerold W. Neudeck,et al.  An experimental study of the source/drain parasitic resistance effects in amorphous silicon thin film transistors , 1992 .

[3]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[4]  T. Klapwijk,et al.  Indium contamination from the indium–tin–oxide electrode in polymer light‐emitting diodes , 1996 .

[5]  R. Superfine,et al.  Bending and buckling of carbon nanotubes under large strain , 1997, Nature.

[6]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[7]  G. Thomas Materials science: Invisible circuits , 1997, Nature.

[8]  T. N. Todorov,et al.  Carbon nanotubes as long ballistic conductors , 1998, Nature.

[9]  Siegmar Roth,et al.  Controlled Adsorption of Carbon Nanotubes on Chemically Modified Electrode Arrays , 1998 .

[10]  Young Hee Lee,et al.  Fully sealed, high-brightness carbon-nanotube field-emission display , 1999 .

[11]  Zhengwei Pan,et al.  Tensile tests of ropes of very long aligned multiwall carbon nanotubes , 1999 .

[12]  W. D. Heer,et al.  Electrostatic deflections and electromechanical resonances of carbon nanotubes , 1999, Science.

[13]  Deron A. Walters,et al.  Elastic strain of freely suspended single-wall carbon nanotube ropes , 1999 .

[14]  G. A. D. Briggs,et al.  Elastic and shear moduli of single-walled carbon nanotube ropes , 1999 .

[15]  Kong,et al.  Nanotube molecular wires as chemical sensors , 2000, Science.

[16]  Charles M. Lieber,et al.  Carbon nanotube-based nonvolatile random access memory for molecular computing , 2000, Science.

[17]  J. Gimzewski,et al.  Electronics using hybrid-molecular and mono-molecular devices , 2000, Nature.

[18]  Dekker,et al.  High-field electrical transport in single-wall carbon nanotubes , 1999, Physical review letters.

[19]  Odintsov Schottky barriers in carbon nanotube heterojunctions , 2000, Physical review letters.

[20]  J. Tour,et al.  Molecular electronics. Synthesis and testing of components. , 2000, Accounts of chemical research.

[21]  Yoon,et al.  Crossed nanotube junctions , 2000, Science.

[22]  Cohen,et al.  Electronic properties of oxidized carbon nanotubes , 2000, Physical review letters.

[23]  R. Ruoff,et al.  Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties , 2000, Physical review letters.

[24]  Zettl,et al.  Extreme oxygen sensitivity of electronic properties of carbon nanotubes , 2000, Science.

[25]  Eklund,et al.  Effects of gas adsorption and collisions on electrical transport in single-walled carbon nanotubes , 2000, Physical review letters.

[26]  Meijie Tang,et al.  Reversible electromechanical characteristics of carbon nanotubes underlocal-probe manipulation , 2000, Nature.

[27]  R. Ruoff,et al.  Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load , 2000, Science.

[28]  Charles M. Lieber,et al.  Functional nanoscale electronic devices assembled using silicon nanowire building blocks. , 2001, Science.

[29]  Stuart A. Wolf,et al.  Spintronics : A Spin-Based Electronics Vision for the Future , 2009 .

[30]  Jing Kong,et al.  Electric-field-directed growth of aligned single-walled carbon nanotubes , 2001 .

[31]  Hui-Ming Cheng,et al.  Hydrogen storage in carbon nanotubes , 2001 .

[32]  Xinqi Chen,et al.  Aligning single-wall carbon nanotubes with an alternating-current electric field , 2001 .

[33]  P. Avouris,et al.  Current saturation and electrical breakdown in multiwalled carbon nanotubes. , 2001, Physical review letters.

[34]  A. Züttel,et al.  Hydrogen-storage materials for mobile applications , 2001, Nature.

[35]  P. Avouris,et al.  Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown , 2001, Science.

[36]  H. Dai,et al.  Growth of Single-Walled Carbon Nanotubes from Discrete Catalytic Nanoparticles of Various Sizes , 2001 .

[37]  P. Avouris,et al.  Theoretical Study of Oxygen Adsorption on Graphite and the (8,0) Single-walled Carbon Nanotube , 2001 .

[38]  A Javey,et al.  Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors. , 2001, Journal of the American Chemical Society.

[39]  Andrew G. Glen,et al.  APPL , 2001 .

[40]  J. Gilman,et al.  Nanotechnology , 2001 .

[41]  H. Dai,et al.  Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. , 2001, Journal of the American Chemical Society.

[42]  P. Avouris,et al.  Mechanical Properties of Carbon Nanotubes , 2001 .

[43]  Phaedon Avouris,et al.  Molecular electronics with carbon nanotubes. , 2002, Accounts of chemical research.

[44]  O. Zhou,et al.  Self‐Assembly of Carbon Nanotubes , 2002 .

[45]  M. Itkis,et al.  Chemistry of single-walled carbon nanotubes. , 2002, Accounts of chemical research.

[46]  Mark S. Lundstrom,et al.  High-κ dielectrics for advanced carbon-nanotube transistors and logic gates , 2002 .

[47]  Hongjie Dai,et al.  Carbon nanotubes: synthesis, integration, and properties. , 2002, Accounts of chemical research.

[48]  Larry A. Nagahara,et al.  Directed placement of suspended carbon nanotubes for nanometer-scale assembly , 2002 .

[49]  Klaus Kern,et al.  Carbon nanotube memory devices of high charge storage stability , 2002 .

[50]  Jijun Zhao,et al.  Gas molecule adsorption in carbon nanotubes and nanotube bundles , 2002 .

[51]  Richard Martel,et al.  Controlling doping and carrier injection in carbon nanotube transistors , 2002 .

[52]  F. Raymo Digital processing and communication with molecular switches , 2002 .

[53]  M. Radosavljevic,et al.  Nonvolatile Molecular Memory Elements Based on Ambipolar Nanotube Field Effect Transistors , 2002 .

[54]  Supriyo Datta,et al.  Metal–insulator–semiconductor electrostatics of carbon nanotubes , 2002 .

[55]  Charles M Lieber,et al.  Fundamental electronic properties and applications of single-walled carbon nanotubes. , 2002, Accounts of chemical research.

[56]  Charles M. Lieber,et al.  Diameter-Controlled Synthesis of Carbon Nanotubes , 2002 .

[57]  R Martel,et al.  Carbon nanotubes as schottky barrier transistors. , 2002, Physical review letters.

[58]  Robert A Beckman,et al.  Self-assembled, deterministic carbon nanotube wiring networks. , 2002, Angewandte Chemie.

[59]  Michael S. Fuhrer,et al.  High-Mobility Nanotube Transistor Memory , 2002 .

[60]  Masamichi Kohno,et al.  Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol , 2002 .

[61]  Bin Chen,et al.  Pore structure of raw and purified HiPco single-walled carbon nanotubes , 2002 .

[62]  Charles M. Lieber,et al.  Vectorial Growth of Metallic and Semiconducting Single-Wall Carbon Nanotubes , 2002 .

[63]  Michael R. Diehl,et al.  Self-Assembled, Deterministic Carbon Nanotube Wiring Networks This work was funded by the Office of Naval Research, DARPA, and an NSF-FRG grant. , 2002 .

[64]  H.-S. Philip Wong Beyond the conventional transistor , 2002, IBM J. Res. Dev..

[65]  M. Shim,et al.  Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Fotios Papadimitrakopoulos,et al.  A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes. , 2003, Journal of the American Chemical Society.

[67]  Benjamin W. Maynor,et al.  Ultralong, Well‐Aligned Single‐Walled Carbon Nanotube Architectureson Surfaces , 2003 .

[68]  V. C. Moore,et al.  Individually suspended single-walled carbon nanotubes in various surfactants , 2003 .

[69]  Benjamin J. Norris,et al.  ZnO-based transparent thin-film transistors , 2003 .

[70]  Alexander Star,et al.  Interaction of Aromatic Compounds with Carbon Nanotubes: Correlation to the Hammett Parameter of the Substituent and Measured Carbon Nanotube FET Response , 2003 .

[71]  M. Zheng,et al.  DNA-assisted dispersion and separation of carbon nanotubes , 2003, Nature materials.

[72]  J. Wager,et al.  Transparent Electronics , 2003, Science.

[73]  Xiangfeng Duan,et al.  High-performance thin-film transistors using semiconductor nanowires and nanoribbons , 2003, Nature.

[74]  Jean-Christophe P. Gabriel,et al.  Flexible Nanotube Electronics , 2003 .

[75]  J. F. Stoddart,et al.  Nanoscale molecular-switch crossbar circuits , 2003 .

[76]  Francisco Pompeo,et al.  Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst. , 2003, Journal of the American Chemical Society.

[77]  R. A. McGill,et al.  Nerve agent detection using networks of single-walled carbon nanotubes , 2003 .

[78]  R. Krupke,et al.  Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes , 2003, Science.

[79]  Jeunghee Park,et al.  Temperature-dependent growth of carbon nanotubes by pyrolysis of ferrocene and acetylene in the range between 700 and 1000 °C , 2003 .

[80]  M. Dresselhaus,et al.  Structure-Based Carbon Nanotube Sorting by Sequence-Dependent DNA Assembly , 2003, Science.

[81]  K. Besteman,et al.  Enzyme-Coated Carbon Nanotubes as Single-Molecule Biosensors , 2003 .

[82]  Richard E. Smalley,et al.  Single-Wall Carbon Nanotube Films , 2003 .

[83]  R. Smalley,et al.  Electronic Structure Control of Single-Walled Carbon Nanotube Functionalization , 2003, Science.

[84]  Qian Wang,et al.  Toward Large Arrays of Multiplex Functionalized Carbon Nanotube Sensors for Highly Sensitive and Selective Molecular Detection. , 2003, Nano letters.

[85]  Jie Liu,et al.  Growth of millimeter-long and horizontally aligned single-walled carbon nanotubes on flat substrates. , 2003, Journal of the American Chemical Society.

[86]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[87]  N. Melosh,et al.  Ultrahigh-Density Nanowire Lattices and Circuits , 2003, Science.

[88]  R. Smalley,et al.  Magnetically aligned single wall carbon nanotube films: preferred orientation and anisotropic transport properties , 2003 .

[89]  Wolfgang Hoenlein,et al.  Growth of isolated carbon nanotubes with lithographically defined diameter and location , 2003 .

[90]  Wahyu Setyawan,et al.  Nanotube electronics: Large-scale assembly of carbon nanotubes , 2003, Nature.

[91]  Ming Zheng,et al.  Understanding the Nature of the DNA-Assisted Separation of Single-Walled Carbon Nanotubes Using Fluorescence and Raman Spectroscopy , 2004 .

[92]  Effects of the pressure on growth of carbon nanotubes by plasma-enhanced hot filament CVD at low substrate temperature , 2004 .

[93]  John R. Reynolds,et al.  Transparent, Conductive Carbon Nanotube Films , 2004, Science.

[94]  Jing Guo,et al.  Carbon Nanotube Field-Effect Transistors with Integrated Ohmic Contacts and High-κ Gate Dielectrics , 2004 .

[95]  Shigeo Maruyama,et al.  Growth of vertically aligned single-walled carbon nanotube films on quartz substrates and their optical anisotropy , 2004 .

[96]  M. Meyyappan,et al.  Room temperature methane detection using palladium loaded single-walled carbon nanotube sensors , 2004 .

[97]  Hideo Hosono,et al.  Carrier transport in transparent oxide semiconductor with intrinsic structural randomness probed using single-crystalline InGaO3(ZnO)5 films , 2004 .

[98]  R. Smalley,et al.  Growth Mechanism of Oriented Long Single Walled Carbon Nanotubes Using "Fast-Heating" Chemical Vapor Deposition Process , 2004 .

[99]  H. Hongo,et al.  Diameter-Controlled Carbon Nanotubes Grown from Lithographically Defined Nanoparticles , 2004 .

[100]  John A. Rogers,et al.  Aligned arrays of single-walled carbon nanotubes generated from random networks by orientationally selective laser ablation , 2004 .

[101]  E. Snow,et al.  Carbon nanotube networks: Nanomaterial for macroelectronic applications , 2004 .

[102]  Liangbing Hu,et al.  Percolation in transparent and conducting carbon nanotube networks , 2004 .

[103]  Zhen Yu,et al.  Electrical Properties of 0.4 cm Long Single-Walled Carbon Nanotubes , 2004, cond-mat/0408332.

[104]  M. Fuhrer,et al.  Extraordinary Mobility in Semiconducting Carbon Nanotubes , 2004 .

[105]  James R Heath,et al.  Whence Molecular Electronics? , 2004, Science.

[106]  A. Rinzler,et al.  Single Wall Carbon Nanotubes for p-Type Ohmic Contacts to GaN Light-Emitting Diodes , 2004 .

[107]  Ya‐Ping Sun,et al.  Selective interactions of porphyrins with semiconducting single-walled carbon nanotubes. , 2004, Journal of the American Chemical Society.

[108]  L. Segev,et al.  Atomic-step-templated formation of single wall carbon nanotube patterns. , 2004, Angewandte Chemie.

[109]  H. Dai,et al.  Preferential Growth of Semiconducting Single-Walled Carbon Nanotubes by a Plasma Enhanced CVD Method , 2004 .

[110]  John A. Rogers,et al.  Solution Casting and Transfer Printing Single-Walled Carbon Nanotube Films , 2004 .

[111]  K. Hata,et al.  Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes , 2004, Science.

[112]  G. Grüner,et al.  Charge Transfer from Adsorbed Proteins , 2004 .

[113]  L. Pfefferle,et al.  Uniform-Diameter Single-Walled Carbon Nanotubes Catalytically Grown in Cobalt-Incorporated MCM-41 , 2004 .

[114]  B. Rajasekharan,et al.  Bias dependence and electrical breakdown of small diameter single-walled carbon nanotubes , 2004 .

[115]  Eric S. Snow,et al.  Simple Route to Large-Scale Ordered Arrays of Liquid-Deposited Carbon Nanotubes , 2004 .

[116]  Kenzo Maehashi,et al.  Chirality selection of single-walled carbon nanotubes by laser resonance chirality selection method , 2004 .

[117]  Zhen Yu,et al.  Carbon nanotube transistor operation at 2.6 Ghz , 2004 .

[118]  Peter Burke,et al.  AC performance of nanoelectronics: towards a ballistic THz nanotube transistor , 2004 .

[119]  E. Snow,et al.  1∕f noise in single-walled carbon nanotube devices , 2004 .

[120]  Yves Leterrier,et al.  Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays , 2004 .

[121]  Vikram Joshi,et al.  Nanoelectronic Carbon Dioxide Sensors , 2004 .

[122]  C. Kane,et al.  Direct measurement of the polarized optical absorption cross section of single-wall carbon nanotubes. , 2004, Physical review letters.

[123]  Jean-Luc Brédas,et al.  Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors , 2004 .

[124]  John A. Rogers,et al.  p-Channel, n-Channel Thin Film Transistors and p−n Diodes Based on Single Wall Carbon Nanotube Networks , 2004 .

[125]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[126]  Edgar Muñoz,et al.  Fabrication and characterization of thin films of single-walled carbon nanotube bundles on flexible plastic substrates. , 2004, Journal of the American Chemical Society.

[127]  Ranganathan Shashidhar,et al.  Magnetically Directed Self‐Assembly of Carbon Nanotube Devices , 2004 .

[128]  D. Physics,et al.  Nanotransfer printing of organic and carbon nanotube thin-film transistors on plastic substrates , 2005, cond-mat/0503463.

[129]  Phaedon Avouris,et al.  Bright Infrared Emission from Electrically Induced Excitons in Carbon Nanotubes , 2005, Science.

[130]  M. Maugey,et al.  An Experimental Approach to the Percolation of Sticky Nanotubes , 2005, Science.

[131]  M. Lundstrom,et al.  Assessment of high-frequency performance potential of carbon nanotube transistors , 2005, IEEE Transactions on Nanotechnology.

[132]  J. Murthy,et al.  Percolating conduction in finite nanotube networks. , 2005, Physical review letters.

[133]  John A Rogers,et al.  Electronically selective chemical functionalization of carbon nanotubes: correlation between Raman spectral and electrical responses. , 2005, Journal of the American Chemical Society.

[134]  Georg S. Duesberg,et al.  Transparent carbon nanotube coatings , 2005 .

[135]  Alan Gelperin,et al.  DNA-decorated carbon nanotubes for chemical sensing. , 2005 .

[136]  刘金明,et al.  IL-13受体α2降低血吸虫病肉芽肿的炎症反应并延长宿主存活时间[英]/Mentink-Kane MM,Cheever AW,Thompson RW,et al//Proc Natl Acad Sci U S A , 2005 .

[137]  Mario G. Ancona,et al.  High-mobility Carbon-nanotube Thin-film Transistors on a Polymeric Substrate , 2005 .

[138]  D. Stewart,et al.  The crossbar latch: Logic value storage, restoration, and inversion in crossbar circuits , 2005 .

[139]  Charge transfer induced polarity switching in carbon nanotube transistors. , 2005, Nano letters.

[140]  Sigurd Wagner,et al.  Stretchable Interconnects for Elastic Electronic Surfaces , 2005, Proceedings of the IEEE.

[141]  Phaedon Avouris,et al.  The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. , 2005, Nano letters.

[142]  John A. Rogers,et al.  Extreme bendability of single-walled carbon nanotube networks transferred from high-temperature growth substrates to plastic and their use in thin-film transistors , 2005 .

[143]  S. Rotkin,et al.  Modeling hysteresis phenomena in nanotube field-effect transistors , 2005, IEEE Transactions on Nanotechnology.

[144]  Seong Chu Lim,et al.  Selective removal of metallic single-walled carbon nanotubes with small diameters by using nitric and sulfuric acids. , 2005, The journal of physical chemistry. B.

[145]  First principles study of work functions of single wall carbon nanotubes. , 2005, Physical review letters.

[146]  Kenzo Maehashi,et al.  Air-stable n-type carbon nanotube field-effect transistors with Si3N4 passivation films fabricated by catalytic chemical vapor deposition , 2005 .

[147]  B. Rajasekharan,et al.  How do carbon nanotubes fit into the semiconductor roadmap? , 2005 .

[148]  Jie Zhang,et al.  Printed Organic Semiconducting Devices , 2005, Proceedings of the IEEE.

[149]  E. Fortunato,et al.  Fully Transparent ZnO Thin‐Film Transistor Produced at Room Temperature , 2005 .

[150]  John A Rogers,et al.  Organic nanodielectrics for low voltage carbon nanotube thin film transistors and complementary logic gates. , 2005, Journal of the American Chemical Society.

[151]  Dmitri V Talapin,et al.  PbSe Nanocrystal Solids for n- and p-Channel Thin Film Field-Effect Transistors , 2005, Science.

[152]  G. Grüner,et al.  Transparent and flexible carbon nanotube transistors. , 2005, Nano letters.

[153]  J. Rogers,et al.  Guided growth of large-scale, horizontally aligned arrays of single-walled carbon nanotubes and their use in thin-film transistors. , 2005, Small.

[154]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[155]  C. Park,et al.  Fabrication of flexible carbon nanotube field emitter arrays by direct microwave irradiation on organic polymer substrate. , 2005, Journal of the American Chemical Society.

[156]  P. McEuen,et al.  Mixing at 50GHz using a single-walled carbon nanotube transistor , 2005 .

[157]  Andrew McCaskie,et al.  Nanomedicine , 2005, BMJ.

[158]  P. Avouris,et al.  Self-aligned carbon nanotube transistors with charge transfer doping , 2005, cond-mat/0511039.

[159]  Wolfgang Kowalsky,et al.  Large Area Electronics Using Printing Methods , 2005, Proceedings of the IEEE.

[160]  On the origin of preferential growth of semiconducting single-walled carbon nanotubes. , 2004, The journal of physical chemistry. B.

[161]  Donhee Ham,et al.  Nanotechnology: High-speed integrated nanowire circuits , 2005, Nature.

[162]  Yutaka Ohno,et al.  n-type carbon nanotube field-effect transistors fabricated by using Ca contact electrodes , 2005 .

[163]  John A. Rogers,et al.  Printed thin-film transistors and complementary logic gates that use polymer-coated single-walled carbon nanotube networks , 2005 .

[164]  A. Ismach,et al.  Carbon nanotube graphoepitaxy: highly oriented growth by faceted nanosteps. , 2005, Journal of the American Chemical Society.

[165]  Ji-Yong Park,et al.  Band structure, phonon scattering, and the performance limit of single-walled carbon nanotube transistors. , 2005, Physical review letters.

[166]  E. Snow,et al.  Capacitance and conductance of single-walled carbon nanotubes in the presence of chemical vapors. , 2005, Nano letters.

[167]  Joo-Hiuk Son,et al.  A diameter-selective attack of metallic carbon nanotubes by nitronium ions. , 2005, Journal of the American Chemical Society.

[168]  J. Appenzeller,et al.  Comparing carbon nanotube transistors - the ideal choice: a novel tunneling device design , 2005, IEEE Transactions on Electron Devices.

[169]  Jijun Zhao,et al.  Distinct properties of single-wall carbon nanotubes with monovalent sidewall additions , 2005 .

[170]  Chongwu Zhou,et al.  Template-free directional growth of single-walled carbon nanotubes on a- and r-plane sapphire. , 2005, Journal of the American Chemical Society.

[171]  John A Rogers,et al.  Polymer electrolyte gating of carbon nanotube network transistors. , 2005, Nano letters.

[172]  Robert H. Reuss,et al.  Macroelectronics: Perspectives on Technology and Applications , 2005, Proceedings of the IEEE.

[173]  L. Pfefferle,et al.  Application of the generalized 2D correlation analysis to dynamic near-edge X-ray absorption spectroscopy data. , 2005, Journal of the American Chemical Society.

[174]  W. Park,et al.  Low-temperature growth of single-walled carbon nanotubes by water plasma chemical vapor deposition. , 2005, Journal of the American Chemical Society.

[175]  Jeong-O Lee,et al.  Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements. , 2005, Journal of the American Chemical Society.

[176]  T. Marks,et al.  MOCVD-derived highly transparent, conductive zinc- and tin-doped indium oxide thin films: precursor synthesis, metastable phase film growth and characterization, and application as anodes in polymer light-emitting diodes. , 2005, Journal of the American Chemical Society.

[177]  George Grüner Carbon nanotube transistors for biosensing applications. , 2005 .

[178]  Tobin J. Marks,et al.  σ-π molecular dielectric multilayers for low-voltage organic thin-film transistors , 2005 .

[179]  Chao Li,et al.  Complementary detection of prostate-specific antigen using In2O3 nanowires and carbon nanotubes. , 2005, Journal of the American Chemical Society.

[180]  E. S. Snow,et al.  Chemical Detection with a Single-Walled Carbon Nanotube Capacitor , 2005, Science.

[181]  H. Dai,et al.  Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[182]  Y. Chang,et al.  Carbon nanotube DNA sensor and sensing mechanism. , 2006, Nano letters.

[183]  John A Rogers,et al.  Heterogeneous Three-Dimensional Electronics by Use of Printed Semiconductor Nanomaterials , 2006, Science.

[184]  Houjin Huang,et al.  Preferential destruction of metallic single-walled carbon nanotubes by laser irradiation. , 2006, The journal of physical chemistry. B.

[185]  John A. Rogers,et al.  Highly Bendable, Transparent Thin‐Film Transistors That Use Carbon‐Nanotube‐Based Conductors and Semiconductors with Elastomeric Dielectrics , 2006 .

[186]  Hyunhyub Ko,et al.  Liquid-crystalline processing of highly oriented carbon nanotube arrays for thin-film transistors. , 2006, Nano letters.

[187]  Gengfeng Zheng,et al.  Nanowire sensors for medicine and the life sciences. , 2006, Nanomedicine.

[188]  Babak A. Parviz,et al.  Self-assembled single-crystal silicon circuits on plastic , 2006, Proceedings of the National Academy of Sciences.

[189]  Michael Rapp,et al.  Thin Films of Metallic Carbon Nanotubes Prepared by Dielectrophoresis , 2006 .

[190]  S. Thompson,et al.  Moore's law: the future of Si microelectronics , 2006 .

[191]  John A. Rogers,et al.  Bilayer Organic–Inorganic Gate Dielectrics for High‐Performance, Low‐Voltage, Single‐Walled Carbon Nanotube Thin‐Film Transistors, Complementary Logic Gates, and p–n Diodes on Plastic Substrates , 2006 .

[192]  M. Prato,et al.  Chemistry of carbon nanotubes. , 2006, Chemical reviews.

[193]  Liangbing Hu,et al.  A method of printing carbon nanotube thin films , 2006 .

[194]  Niyazi Serdar Sariciftci,et al.  PROGRESS IN PLASTIC ELECTRONICS DEVICES , 2006 .

[195]  Alexander Star,et al.  Gas sensor array based on metal-decorated carbon nanotubes. , 2006, The journal of physical chemistry. B.

[196]  John A Rogers,et al.  In situ deposition and patterning of single-walled carbon nanotubes by laminar flow and controlled flocculation in microfluidic channels. , 2006, Angewandte Chemie.

[197]  Chongwu Zhou,et al.  Novel nanotube-on-insulator (NOI) approach toward single-walled carbon nanotube devices. , 2006, Nano letters.

[198]  A. Rinzler,et al.  An Integrated Logic Circuit Assembled on a Single Carbon Nanotube , 2006, Science.

[199]  Hee Cheul Choi,et al.  Network single-walled carbon nanotube-field effect transistors (SWNT-FETs) with increased Schottky contact area for highly sensitive biosensor applications. , 2006, Journal of the American Chemical Society.

[200]  M. G. Kane,et al.  Low-Temperature Polycrystalline Silicon Thin-Film Transistors and Circuits on Flexible Substrates , 2006 .

[201]  E. Pop,et al.  Thermal conductance of an individual single-wall carbon nanotube above room temperature. , 2005, Nano letters.

[202]  Daihua Zhang,et al.  Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. , 2006 .

[203]  J. M. Kim,et al.  Development of High-Performance Organic Thin-Film Transistors for Large-Area Displays , 2006 .

[204]  E. Snow,et al.  Chemical vapor detection using single-walled carbon nanotubes. , 2006, Chemical Society reviews.

[205]  Liangbing Hu,et al.  Conductivity scaling with bundle length and diameter in single walled carbon nanotube networks , 2006 .

[206]  John A Rogers,et al.  Controlled buckling of semiconductor nanoribbons for stretchable electronics , 2006, Nature nanotechnology.

[207]  M. Shim,et al.  Insights on charge transfer doping and intrinsic phonon line shape of carbon nanotubes by simple polymer adsorption. , 2006, Journal of the American Chemical Society.

[208]  Jayathi Y. Murthy,et al.  Theory of transfer characteristics of nanotube network transistors , 2006 .

[209]  E. Snow,et al.  Role of defects in single-walled carbon nanotube chemical sensors. , 2006, Nano letters.

[210]  Heli Jantunen,et al.  Inkjet printing of electrically conductive patterns of carbon nanotubes. , 2006, Small.

[211]  Garry Rumbles,et al.  Organic solar cells with carbon nanotubes replacing In2O3:Sn as the transparent electrode , 2006 .

[212]  Yasumitsu Miyata,et al.  Selective oxidation of semiconducting single-wall carbon nanotubes by hydrogen peroxide. , 2006, The journal of physical chemistry. B.

[213]  A. Ismach,et al.  Orthogonal self-assembly of carbon nanotube crossbar architectures by simultaneous graphoepitaxy and field-directed growth. , 2006, Nano letters.

[214]  Mark C. Hersam,et al.  Sorting carbon nanotubes by electronic structure using density differentiation , 2006, Nature nanotechnology.

[215]  G. Grüner,et al.  Carbon nanotube films for transparent and plastic electronics , 2006 .

[216]  John A. Rogers,et al.  Transparent flexible organic thin-film transistors that use printed single-walled carbon nanotube electrodes , 2006 .

[217]  Liangbing Hu,et al.  Organic solar cells with carbon nanotube network electrodes , 2006 .

[218]  Irving P. Herman,et al.  Precise positioning of single-walled carbon nanotubes by ac dielectrophoresis , 2006 .

[219]  S. Lemay,et al.  Single‐Walled Carbon Nanotubes as Templates and Interconnects for Nanoelectrodes , 2006 .

[220]  H. Dai,et al.  Selective Etching of Metallic Carbon Nanotubes by Gas-Phase Reaction , 2006, Science.

[221]  James Hone,et al.  Cobalt ultrathin film catalyzed ethanol chemical vapor deposition of single-walled carbon nanotubes. , 2006, The journal of physical chemistry. B.

[222]  E. Tu,et al.  Label-free detection of DNA hybridization using carbon nanotube network field-effect transistors. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[223]  Phaedon Avouris,et al.  Nanotube electronics and optoelectronics , 2006 .

[224]  Interaction of solid organic acids with carbon nanotube field effect transistors , 2006, cond-mat/0702198.

[225]  Tobin J Marks,et al.  Organic light-emitting diodes having carbon nanotube anodes. , 2006, Nano letters.

[226]  Jayathi Y. Murthy,et al.  Theory of Nanocomposite Network Transistors for Macroelectronics Applications , 2006 .

[227]  V. Popov Carbon Nanotubes: Properties and Applications , 2006 .

[228]  M. Lee,et al.  Linker-free directed assembly of high-performance integrated devices based on nanotubes and nanowires , 2006, Nature nanotechnology.

[229]  Phaedon Avouris,et al.  Electrically excited, localized infrared emission from single carbon nanotubes. , 2006, Nano letters.

[230]  Elastomeric carbon nanotube circuits for local strain sensing , 2006, cond-mat/0606463.

[231]  O. Wunnicke,et al.  Gate capacitance of back-gated nanowire field-effect transistors , 2006 .

[232]  Vertically aligned dense carbon nanotube growth with diameter control by block copolymer micelle catalyst templates. , 2006, The journal of physical chemistry. B.

[233]  Aaron A. Pesetski,et al.  Carbon nanotube field-effect transistor operation at microwave frequencies , 2006 .

[234]  Charles M. Lieber,et al.  Ge/Si nanowire heterostructures as high-performance field-effect transistors , 2006, Nature.

[235]  John A. Rogers,et al.  Electrical detection of hybridization and threading intercalation of deoxyribonucleic acid using carbon nanotube network field-effect transistors , 2006 .

[236]  John A Rogers,et al.  Spatially selective guided growth of high-coverage arrays and random networks of single-walled carbon nanotubes and their integration into electronic devices. , 2006, Journal of the American Chemical Society.

[237]  P. Burke,et al.  Ultrahigh Frequency Carbon Nanotube Transistor Based on a Single Nanotube , 2007, IEEE Transactions on Nanotechnology.

[238]  Pooi See Lee,et al.  DNA sensing by field-effect transistors based on networks of carbon nanotubes. , 2007, Journal of the American Chemical Society.

[239]  G. Fecher,et al.  Spintronics: a challenge for materials science and solid-state chemistry. , 2007, Angewandte Chemie.

[240]  Carbon nanonets spark new electronics. , 2007 .

[241]  Jinhee Kim,et al.  Origin of gate hysteresis in carbon nanotube field-effect transistors , 2007 .

[242]  Chang-Soo Han,et al.  Single-Walled Carbon Nanotube Gold Nanohybrids: Application in Highly Effective Transparent and Conductive Films , 2007 .

[243]  Bonnie A. Sheriff,et al.  A 160-kilobit molecular electronic memory patterned at 1011 bits per square centimetre , 2007, Nature.

[244]  E. Hernández,et al.  Mechanical Properties, Thermal Stability and Heat Transport in Carbon Nanotubes , 2007 .

[245]  Yugang Sun,et al.  Electrodeposition of Pd nanoparticles on single-walled carbon nanotubes for flexible hydrogen sensors , 2007 .

[246]  Carbon nanotube bumps for thermal and electric conduction in transistor , 2007 .

[247]  Jean-Christophe Charlier,et al.  Electronic and transport properties of nanotubes , 2007 .

[248]  A. Star,et al.  Carbon Nanotube Field‐Effect‐Transistor‐Based Biosensors , 2007 .

[249]  Ya-li Li,et al.  Synthesis of high purity single-walled carbon nanotubes from ethanol by catalytic gas flow CVD reactions , 2007 .

[250]  A. Star,et al.  Carbon nanotube sensors for exhaled breath components , 2007 .

[251]  John A Rogers,et al.  Micro- and nanopatterning techniques for organic electronic and optoelectronic systems. , 2007, Chemical reviews.

[252]  Michael E. Flatté,et al.  Challenges for semiconductor spintronics , 2007 .

[253]  Charles M. Lieber,et al.  Nanoelectronics from the bottom up. , 2007, Nature materials.

[254]  John A Rogers,et al.  High-resolution electrohydrodynamic jet printing. , 2007, Nature materials.

[255]  Jeong-O Lee,et al.  Selective suppression of conductance in metallic carbon nanotubes. , 2007, Journal of the American Chemical Society.

[256]  Synthesis of aligned single-walled nanotubes using catalysts defined by nanosphere lithography. , 2007, Journal of the American Chemical Society.

[257]  Hongjie Dai,et al.  siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. , 2007, Angewandte Chemie.

[258]  Aaron A. Pesetski,et al.  Inherent linearity in carbon nanotube field-effect transistors , 2007 .

[259]  Ming Zheng,et al.  Enrichment of single chirality carbon nanotubes. , 2007, Journal of the American Chemical Society.

[260]  Gate capacitance coupling of singled-walled carbon nanotube thin-film transistors , 2006, cond-mat/0612012.

[261]  Peter Burke,et al.  Carbon nanotube radio. , 2007, Nano letters.

[262]  Liangbing Hu,et al.  Patternable transparent carbon nanotube films for electrochromic devices , 2007 .

[263]  J. Meindl,et al.  Design and Performance Modeling for Single-Walled Carbon Nanotubes as Local, Semiglobal, and Global Interconnects in Gigascale Integrated Systems , 2007, IEEE Transactions on Electron Devices.

[264]  Christofer Hierold,et al.  NANO ELECTROMECHANICAL SENSORS BASED ON CARBON NANOTUBES , 2007 .

[265]  Li Wei,et al.  (n,m) Selectivity of single-walled carbon nanotubes by different carbon precursors on Co-Mo catalysts. , 2007, Journal of the American Chemical Society.

[266]  O. Urakawa,et al.  Small - , 2007 .

[267]  John A Rogers,et al.  Printed multilayer superstructures of aligned single-walled carbon nanotubes for electronic applications. , 2007, Nano letters.

[268]  Flora M. Li,et al.  Ink-jet printing of carbon nanotube thin film transistors , 2007 .

[269]  Jing Huang,et al.  An Overview of Nanoscale Devices and Circuits , 2007, IEEE Design & Test of Computers.

[270]  Young Hee Lee,et al.  Effect of acid treatment on carbon nanotube-based flexible transparent conducting films. , 2007, Journal of the American Chemical Society.

[271]  James F. Rusling,et al.  Carbon Nanotubes for Electronic and Electrochemical Detection of Biomolecules , 2007, Advanced materials.

[272]  Yu Sun,et al.  Development of Carbon Nanotube-Based Sensors—A Review , 2007, IEEE Sensors Journal.

[273]  Li Zhang,et al.  Langmuir-blodgett assembly of densely aligned single-walled carbon nanotubes from bulk materials. , 2007, Journal of the American Chemical Society.

[274]  Seong Jun Kang,et al.  Limits of Performance Gain of Aligned CNT Over Randomized Network: Theoretical Predictions and Experimental Validation , 2007, IEEE Electron Device Letters.

[275]  John A. Rogers,et al.  Inorganic Semiconductors for Flexible Electronics , 2007 .

[276]  John A. Rogers,et al.  Improved Synthesis of Aligned Arrays of Single-Walled Carbon Nanotubes and Their Implementation in Thin Film Type Transistors† , 2007 .

[277]  Ahmed Busnaina,et al.  Building highly organized single-walled-carbon-nanotube networks using template-guided fluidic assembly. , 2007, Small.

[278]  K. Ikeda,et al.  Competition and cooperation between lattice-oriented growth and step-templated growth of aligned carbon nanotubes on sapphire , 2007 .

[279]  Henri Happy,et al.  Intrinsic current gain cutoff frequency of 30GHz with carbon nanotube transistors , 2007 .

[280]  Eric S. Snow,et al.  Improved chemical detection using single-walled carbon nanotube network capacitors , 2007 .

[281]  Electrowetting devices with transparent single-walled carbon nanotube electrodes , 2007 .

[282]  Jing Guo,et al.  Performance Assessment of Subpercolating Nanobundle Network Thin-Film Transistors by an Analytical Model , 2007, IEEE Transactions on Electron Devices.

[283]  Current–Voltage Characteristics of Long-Channel Nanobundle Thin-Film Transistors: A “Bottom-Up” Perspective , 2006, IEEE Electron Device Letters.

[284]  Yugang Sun,et al.  High‐Performance, Flexible Hydrogen Sensors That Use Carbon Nanotubes Decorated with Palladium Nanoparticles , 2007 .

[285]  Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection. , 2007, Journal of the American Chemical Society.

[286]  Henri Happy,et al.  Gigahertz frequency flexible carbon nanotube transistors , 2007 .

[287]  N. Wilson,et al.  Controlled growth and characterization of two-dimensional single-walled carbon-nanotube networks for electrical applications. , 2007, Small.

[288]  X. Duan Assembled Semiconductor Nanowire Thin Films for High-Performance Flexible Macroelectronics , 2007 .

[289]  Cherie R. Kagan,et al.  Chemically assisted directed assembly of carbon nanotubes for the fabrication of large-scale device arrays. , 2007, Journal of the American Chemical Society.

[290]  Lain‐Jong Li,et al.  Pressure-Induced Single-Walled Carbon Nanotube (n,m) Selectivity on Co−Mo Catalysts , 2007 .

[291]  Antonio Facchetti,et al.  Semiconductors for organic transistors , 2007 .

[292]  J. Rogers,et al.  High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. , 2007, Nature nanotechnology.

[293]  R. Nicholas,et al.  Highly selective dispersion of single-walled carbon nanotubes using aromatic polymers. , 2007, Nature nanotechnology.

[294]  J. Murthy,et al.  Computational Model for Transport in Nanotube-Based Composites With Applications to Flexible Electronics , 2007 .

[295]  Charles M Lieber,et al.  Large-area blown bubble films of aligned nanowires and carbon nanotubes. , 2007, Nature nanotechnology.

[296]  Ting Zhang,et al.  Palladium Nanoparticles Decorated Single-Walled Carbon Nanotube Hydrogen Sensor , 2007 .

[297]  Zhong Jin,et al.  Ultralow feeding gas flow guiding growth of large-scale horizontally aligned single-walled carbon nanotube arrays. , 2007, Nano letters.

[298]  Krisztian Kordas,et al.  Chip cooling with integrated carbon nanotube microfin architectures , 2007 .

[299]  J. Rogers,et al.  Experimental and theoretical studies of transport through large scale, partially aligned arrays of single-walled carbon nanotubes in thin film type transistors. , 2007, Nano letters.

[300]  P. Avouris,et al.  Carbon-based electronics. , 2007, Nature nanotechnology.

[301]  Michael S Strano,et al.  On-chip micro gas chromatograph enabled by a noncovalently functionalized single-walled carbon nanotube sensor array. , 2008, Angewandte Chemie.

[302]  Charles M. Lieber,et al.  Nanomaterial-incorporated blown bubble films for large-area, aligned nanostructures , 2008 .

[303]  J. F. Stoddart,et al.  Pyrenecyclodextrin‐Decorated Single‐Walled Carbon Nanotube Field‐Effect Transistors as Chemical Sensors , 2008 .

[304]  John A Rogers,et al.  Molecular scale buckling mechanics in individual aligned single-wall carbon nanotubes on elastomeric substrates. , 2008, Nano letters.

[305]  T. Someya,et al.  A Rubberlike Stretchable Active Matrix Using Elastic Conductors , 2008, Science.

[306]  J. Jang,et al.  A Novel Sensor Platform Based on Aptamer‐Conjugated Polypyrrole Nanotubes for Label‐Free Electrochemical Protein Detection , 2008, Chembiochem : a European journal of chemical biology.

[307]  Zhaohui Zhong,et al.  Terahertz time-domain measurement of ballistic electron resonance in a single-walled carbon nanotube. , 2008, Nature nanotechnology.

[308]  Shuo-Hung Chang,et al.  Fabrication of single-walled carbon nanotube flexible strain sensors with high sensitivity , 2008 .

[309]  J. Rogers,et al.  Complementary Logic Gates and Ring Oscillators on Plastic Substrates by Use of Printed Ribbons of Single-Crystalline Silicon , 2008, IEEE Electron Device Letters.

[310]  Yonggang Huang,et al.  Stretchable and Foldable Silicon Integrated Circuits , 2008, Science.

[311]  Dominique Vuillaume,et al.  Molecular-scale electronics , 2008 .

[312]  J. Rogers Electronic materials: making graphene for macroelectronics. , 2008, Nature nanotechnology.

[313]  Jie Liu,et al.  Growth of high-density parallel arrays of long single-walled carbon nanotubes on quartz substrates. , 2008, Journal of the American Chemical Society.

[314]  P. Kapur,et al.  Performance Comparisons Between Cu/Low-$\kappa$ , Carbon-Nanotube, and Optics for Future On-Chip Interconnects , 2008, IEEE Electron Device Letters.

[315]  W. Yuan,et al.  Fault‐Tolerant Dielectric Elastomer Actuators using Single‐Walled Carbon Nanotube Electrodes , 2008 .

[316]  Dae Sik Lee,et al.  Doping and de-doping of carbon nanotube transparent conducting films by dispersant and chemical treatment , 2008 .

[317]  Anthony J. Miller,et al.  Carbon nanotubes: a multi-functional material for organic optoelectronics , 2008 .

[318]  Mark C. Hersam,et al.  Colored semitransparent conductive coatings consisting of monodisperse metallic single-walled carbon nanotubes. , 2008, Nano letters.

[319]  Yugang Sun,et al.  Single-Walled Carbon Nanotubes Modified with Pd Nanoparticles : Unique Building Blocks for High-Performance, Flexible Hydrogen Sensors , 2008 .

[320]  Li Zhang,et al.  Assessment of chemically separated carbon nanotubes for nanoelectronics. , 2008, Journal of the American Chemical Society.

[321]  Liangbing Hu,et al.  Modification of single-walled carbon nanotube electrodes by layer-by-layer assembly for electrochromic devices , 2008 .

[322]  J. Chaste,et al.  Single carbon nanotube transistor at GHz frequency. , 2008, Nano letters.

[323]  Nobutsugu Minami,et al.  Semiconductor-enriched single wall carbon nanotube networks applied to field effect transistors , 2008, 1001.0892.

[324]  H. Dai,et al.  Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors , 2008, Science.

[325]  Hiromichi Kataura,et al.  Logic circuits using solution-processed single-walled carbon nanotube transistors , 2008 .

[326]  Shinobu Fujita,et al.  A 1 GHz integrated circuit with carbon nanotube interconnects and silicon transistors. , 2008, Nano letters.

[327]  A. Hirsch,et al.  Preferred functionalization of metallic and small-diameter single walled carbon nanotubesvia reductive alkylation , 2008 .

[328]  J. Rogers,et al.  Synthesis of linked carbon monolayers: Films, balloons, tubes, and pleated sheets , 2008, Proceedings of the National Academy of Sciences.

[329]  John A Rogers,et al.  Radio frequency analog electronics based on carbon nanotube transistors , 2008, Proceedings of the National Academy of Sciences.

[330]  Thomas Thundat,et al.  ReviewNanosensors for trace explosive detection , 2008 .

[331]  Yang Xu,et al.  Comparative study on different carbon nanotube materials in terms of transparent conductive coatings. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[332]  G. Eda,et al.  Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. , 2008, Nature nanotechnology.

[333]  M. Prato,et al.  Functionalized carbon nanotubes in drug design and discovery. , 2008, Accounts of chemical research.

[334]  Cees Dekker,et al.  Identifying the mechanism of biosensing with carbon nanotube transistors. , 2008, Nano letters.

[335]  A. Ismach,et al.  Self-organized nanotube serpentines. , 2008, Nature nanotechnology.

[336]  Heung Cho Ko,et al.  A hemispherical electronic eye camera based on compressible silicon optoelectronics , 2008, Nature.

[337]  S. Roth,et al.  Thin, conductive, carbon nanotube networks over transparent substrates by electrophoretic deposition , 2008 .

[338]  S. Roth,et al.  Sonochemical Optimization of the Conductivity of Single Wall Carbon Nanotube Networks , 2008 .

[339]  S. Barman,et al.  Self-Sorted, Aligned Nanotube Networks for Thin-Film Transistors , 2008, Science.

[340]  A. Hirsch,et al.  Preferred functionalization of metallic and small-diameter single-walled carbon nanotubes by nucleophilic addition of organolithium and -magnesium compounds followed by reoxidation. , 2008, Chemistry.

[341]  Jeong-O Lee,et al.  Detection and titer estimation of Escherichia coli using aptamer-functionalized single-walled carbon-nanotube field-effect transistors. , 2008, Small.

[342]  John A Rogers,et al.  Semiconductor wires and ribbons for high-performance flexible electronics. , 2008, Angewandte Chemie.

[344]  Jaehun Chun,et al.  Length Fractionation of Carbon Nanotubes Using Centrifugation , 2008 .

[345]  Ity Sharma,et al.  Selection of carbon nanotubes with specific chiralities using helical assemblies of flavin mononucleotide. , 2008, Nature nanotechnology.

[346]  J. Rogers,et al.  Electrical Detection of Femtomolar DNA via Gold‐Nanoparticle Enhancement in Carbon‐Nanotube‐Network Field‐Effect Transistors , 2008 .

[347]  Jörg Appenzeller,et al.  Carbon Nanotubes for High-Performance Electronics—Progress and Prospect , 2008, Proceedings of the IEEE.

[348]  M. Hersam Progress towards monodisperse single-walled carbon nanotubes. , 2008, Nature nanotechnology.

[349]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[350]  Yi Xuan,et al.  Fully Transparent Thin‐Film Transistors Based on Aligned Carbon Nanotube Arrays and Indium Tin Oxide Electrodes , 2009, Advanced materials.

[351]  G. Ostojic,et al.  Carbon Nanotubes , 2010, Methods in Molecular Biology.

[352]  M. Ferenets,et al.  Thin Solid Films , 2010 .