Greed Is Good: Near-Optimal Submodular Maximization via Greedy Optimization

It is known that greedy methods perform well for maximizing monotone submodular functions. At the same time, such methods perform poorly in the face of non-monotonicity. In this paper, we show - arguably, surprisingly - that invoking the classical greedy algorithm $O(\sqrt{k})$-times leads to the (currently) fastest deterministic algorithm, called Repeated Greedy, for maximizing a general submodular function subject to $k$-independent system constraints. Repeated Greedy achieves $(1 + O(1/\sqrt{k}))k$ approximation using $O(nr\sqrt{k})$ function evaluations (here, $n$ and $r$ denote the size of the ground set and the maximum size of a feasible solution, respectively). We then show that by a careful sampling procedure, we can run the greedy algorithm only once and obtain the (currently) fastest randomized algorithm, called Sample Greedy, for maximizing a submodular function subject to $k$-extendible system constraints (a subclass of $k$-independent system constrains). Sample Greedy achieves $(k + 3)$-approximation with only $O(nr/k)$ function evaluations. Finally, we derive an almost matching lower bound, and show that no polynomial time algorithm can have an approximation ratio smaller than $ k + 1/2 - \varepsilon$. To further support our theoretical results, we compare the performance of Repeated Greedy and Sample Greedy with prior art in a concrete application (movie recommendation). We consistently observe that while Sample Greedy achieves practically the same utility as the best baseline, it performs at least two orders of magnitude faster.

[1]  U. Feige,et al.  Maximizing Non-monotone Submodular Functions , 2011 .

[2]  Morteza Zadimoghaddam,et al.  Fast Distributed Submodular Cover: Public-Private Data Summarization , 2016, NIPS.

[3]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..

[4]  Satoru Fujishige,et al.  Submodular functions and optimization , 1991 .

[5]  Andreas Krause,et al.  Distributed Submodular Maximization: Identifying Representative Elements in Massive Data , 2013, NIPS.

[6]  Éva Tardos,et al.  Maximizing the Spread of Influence through a Social Network , 2015, Theory Comput..

[7]  Andreas Krause,et al.  Lazier Than Lazy Greedy , 2014, AAAI.

[8]  M. Skala Hypergeometric tail inequalities: ending the insanity , 2013, 1311.5939.

[9]  Zoubin Ghahramani,et al.  Scaling the Indian Buffet Process via Submodular Maximization , 2013, ICML.

[10]  Hui Lin,et al.  A Class of Submodular Functions for Document Summarization , 2011, ACL.

[11]  Laurence A. Wolsey,et al.  Best Algorithms for Approximating the Maximum of a Submodular Set Function , 1978, Math. Oper. Res..

[12]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[13]  Julián Mestre,et al.  Greedy in Approximation Algorithms , 2006, ESA.

[14]  Vasek Chvátal,et al.  The tail of the hypergeometric distribution , 1979, Discret. Math..

[15]  Niv Buchbinder,et al.  Constrained Submodular Maximization via a Non-symmetric Technique , 2016, Math. Oper. Res..

[16]  Joseph Naor,et al.  A Tight Linear Time (1/2)-Approximation for Unconstrained Submodular Maximization , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[17]  Jan Vondr Symmetry and Approximability of Submodular Maximization Problems , 2013 .

[18]  Jure Leskovec,et al.  Inferring networks of diffusion and influence , 2010, KDD.

[19]  Jan Vondrák,et al.  Submodular Maximization over Multiple Matroids via Generalized Exchange Properties , 2009, Math. Oper. Res..

[20]  Ben Taskar,et al.  Near-Optimal MAP Inference for Determinantal Point Processes , 2012, NIPS.

[21]  Justin Ward A (k+3)/2-approximation algorithm for monotone submodular k-set packing and general k-exchange systems , 2012, STACS.

[22]  Joseph Naor,et al.  Improved Approximations for k-Exchange Systems - (Extended Abstract) , 2011, ESA.

[23]  Jack Edmonds,et al.  Matroids and the greedy algorithm , 1971, Math. Program..

[24]  Thorsten Joachims,et al.  Temporal corpus summarization using submodular word coverage , 2012, CIKM '12.

[25]  MazumderRahul,et al.  Matrix completion and low-rank SVD via fast alternating least squares , 2015 .

[26]  Aaron Roth,et al.  Constrained Non-monotone Submodular Maximization: Offline and Secretary Algorithms , 2010, WINE.

[27]  Andreas Krause,et al.  Near-optimal sensor placements in Gaussian processes , 2005, ICML.

[28]  Andreas Krause,et al.  Near-Optimally Teaching the Crowd to Classify , 2014, ICML.

[29]  Alexandros G. Dimakis,et al.  Sparse and Greedy: Sparsifying Submodular Facility Location Problems , 2015 .

[30]  Andreas Krause,et al.  Cost-effective outbreak detection in networks , 2007, KDD '07.

[31]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[32]  Niv Buchbinder,et al.  Deterministic Algorithms for Submodular Maximization Problems , 2016, SODA.

[33]  Joseph Naor,et al.  A Tight Linear Time (1/2)-Approximation for Unconstrained Submodular Maximization , 2015, SIAM J. Comput..

[34]  Baharan Mirzasoleiman,et al.  Fast Constrained Submodular Maximization: Personalized Data Summarization , 2016, ICML.

[35]  Joseph Naor,et al.  Submodular Maximization with Cardinality Constraints , 2014, SODA.

[36]  Jan Vondrák,et al.  Fast algorithms for maximizing submodular functions , 2014, SODA.

[37]  Andreas Krause,et al.  Distributed Submodular Cover: Succinctly Summarizing Massive Data , 2015, NIPS.

[38]  Roy Schwartz,et al.  Comparing Apples and Oranges: Query Tradeoff in Submodular Maximization , 2015, SODA.

[39]  Jan Vondrák,et al.  Maximizing a Monotone Submodular Function Subject to a Matroid Constraint , 2011, SIAM J. Comput..

[40]  Huy L. Nguyen,et al.  Constrained Submodular Maximization: Beyond 1/e , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[41]  Dafna Shahaf,et al.  Turning down the noise in the blogosphere , 2009, KDD.

[42]  Jeff A. Bilmes,et al.  Submodularity for Data Selection in Statistical Machine Translation , 2014 .

[43]  Joseph Naor,et al.  A Unified Continuous Greedy Algorithm for Submodular Maximization , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[44]  Jan Vondrák,et al.  Submodular maximization by simulated annealing , 2010, SODA '11.