Three‐Dimensional Porous Copper–Tin Alloy Electrodes for Rechargeable Lithium Batteries

Three‐dimensional (3D) foam structure of a Cu6Sn5 alloy was fabricated via an electrochemical deposition process. The walls of the foam structure are highly porous and consist of numerous small grains. When used as a negative electrode for a rechargeable lithium battery, the Cu6Sn5 samples delivered a reversible capacity of about 400 mA h g–1 up to 30 cycles. Further, these materials exhibit superior rate capability, attributed primarily to the unique porous structure and the large surface area for fast mass transport and rapid surface reactions. For instance, at a current drain of 10 mA cm–2 (20C rate), the obtainable capacity (220 mA h g–1) was more than 50 % of the capacity at 0.5 mA cm–2 (1C rate).

[1]  Meilin Liu,et al.  Nanoporous Structures Prepared by an Electrochemical Deposition Process , 2003 .

[2]  T. Yokoshima,et al.  Electrodeposited Sn-Ni alloy film as a high capacity anode material for lithium-ion secondary batteries , 2003 .

[3]  J. Dahn,et al.  Single Bath, Pulsed Electrodeposition of Copper-Tin Alloy Negative Electrodes for Lithium-ion Batteries , 2003 .

[4]  Y. Yoon,et al.  Nanostructured Ni3Sn2 thin film as anodes for thin film rechargeable lithium batteries , 2003 .

[5]  R. Huggins Alternative materials for negative electrodes in lithium systems , 2002 .

[6]  K. Edström,et al.  Structural Transformations in Lithiated η′-Cu6Sn5 Electrodes Probed by In Situ Mössbauer Spectroscopy and X-Ray Diffraction , 2002 .

[7]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[8]  Yongyao Xia,et al.  Flake Cu-Sn Alloys as Negative Electrode Materials for Rechargeable Lithium Batteries , 2001 .

[9]  J. Dahn,et al.  In Situ X‐Ray Study of the Electrochemical Reaction of Li with η ′ ‐ Cu6Sn5 , 2000 .

[10]  D. H. Bradhurst,et al.  Lithium storage properties of nanocrystalline eta-Cu6Sn5 alloys prepared by ball-milling , 2000 .

[11]  G. M. Ehrlich,et al.  Metallic Negative Electrode Materials for Rechargeable Nonaqueous Batteries , 2000 .

[12]  Martin Winter,et al.  Electrochemical lithiation of tin and tin-based intermetallics and composites , 1999 .

[13]  J. M. Elliott,et al.  Nanostructured tin for use as a negative electrode material in Li-ion batteries , 1999 .

[14]  Robert A. Huggins,et al.  Lithium alloy negative electrodes , 1999 .

[15]  John T. Vaughey,et al.  Li x Cu6Sn5 ( 0 < x < 13 ) : An Intermetallic Insertion Electrode for Rechargeable Lithium Batteries , 1999 .

[16]  Michael M. Thackeray,et al.  Li{sub x}Cu{sub 6}Sn{sub 5} (0 , 1999 .

[17]  R. Benedek,et al.  Intermetallic insertion electrodes derived from NiAs-, Ni2In-, and Li2CuSn-type structures for lithium-ion batteries , 1999 .

[18]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[19]  J. Dahn,et al.  Electrochemical and In Situ X‐Ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites , 1997 .

[20]  Martin Winter,et al.  Small particle size multiphase Li-alloy anodes for lithium-ionbatteries , 1996 .

[21]  Sven Lidin,et al.  The superstructure of domain‐twinned η'‐Cu6Sn5 , 1994 .

[22]  M. Pourbaix Atlas of Electrochemical Equilibria in Aqueous Solutions , 1974 .

[23]  J. Dahn,et al.  Active/Inactive Nanocomposites as Anodes for Li ‐ Ion Batteries , 1999 .