Greedy Coarsening Strategies for Nonsymmetric Problems

The solution of large-scale linear systems in computational science and engineering requires efficient solvers and preconditioners. Often, the most effective such techniques are those based on multilevel splittings of the problem. In this paper, we consider the problem of partitioning both symmetric and nonsymmetric matrices based solely on algebraic criteria. A new algorithm is proposed that combines attractive features of two previous techniques proposed by the authors. It offers rigorous guarantees of certain properties of the partitioning, yet is naturally compatible with the threshold based dropping known to be effective for incomplete factorizations. Numerical results show that the new partitioning scheme leads to improved results for a variety of problems. The effects of further matrix reordering within the fine-scale block are also considered.

[1]  Christian Wagner,et al.  Multilevel ILU decomposition , 1999, Numerische Mathematik.

[2]  Y. Saad,et al.  Adapting Algebraic Recursive Multilevel Solvers ( ARMS ) for solving CFD problems , 2002 .

[3]  E. F. F. Botta,et al.  Matrix Renumbering ILU: An Effective Algebraic Multilevel ILU Preconditioner for Sparse Matrices , 1999, SIAM J. Matrix Anal. Appl..

[4]  StübenKlaus Algebraic multigrid (AMG) , 1983 .

[5]  Yousef Saad,et al.  ARMS: an algebraic recursive multilevel solver for general sparse linear systems , 2002, Numer. Linear Algebra Appl..

[6]  Thomas A. Manteuffel,et al.  Adaptive Smoothed Aggregation (αSA) , 2004, SIAM J. Sci. Comput..

[7]  曹志浩,et al.  ON ALGEBRAIC MULTILEVEL PRECONDITIONING METHODS , 1993 .

[8]  Thomas A. Manteuffel,et al.  Adaptive reduction‐based AMG , 2006, Numer. Linear Algebra Appl..

[9]  Olaf Schenk,et al.  The effects of unsymmetric matrix permutations and scalings in semiconductor device and circuit simulation , 2004, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[10]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[11]  Yousef Saad,et al.  Variations on algebraic recursive multilevel solvers (ARMS) for the solution of CFD problems , 2004 .

[12]  Yousef Saad,et al.  A Greedy Strategy for Coarse-Grid Selection , 2007, SIAM J. Sci. Comput..

[13]  Thomas A. Manteuffel,et al.  Adaptive Algebraic Multigrid , 2005, SIAM J. Sci. Comput..

[14]  Panayot S. Vassilevski,et al.  On Generalizing the Algebraic Multigrid Framework , 2004, SIAM J. Numer. Anal..

[15]  O. Axelsson,et al.  Algebraic multilevel preconditioning methods, II , 1990 .

[16]  Jorge J. Moré,et al.  Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .

[17]  Michele Benzi,et al.  Orderings for Incomplete Factorization Preconditioning of Nonsymmetric Problems , 1999, SIAM J. Sci. Comput..

[18]  Yvan Notay,et al.  Algebraic multigrid and algebraic multilevel methods: a theoretical comparison , 2005, Numer. Linear Algebra Appl..

[19]  Yousef Saad,et al.  ILUM: A Multi-Elimination ILU Preconditioner for General Sparse Matrices , 1996, SIAM J. Sci. Comput..

[20]  Jun Zhang,et al.  BILUM: Block Versions of Multielimination and Multilevel ILU Preconditioner for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..

[21]  Yousef Saad,et al.  Multilevel ILU With Reorderings for Diagonal Dominance , 2005, SIAM J. Sci. Comput..

[22]  Patrick R. Amestoy,et al.  An Approximate Minimum Degree Ordering Algorithm , 1996, SIAM J. Matrix Anal. Appl..

[23]  Henk A. van der Vorst,et al.  A parallel linear system solver for circuit simulation problems , 2000, Numer. Linear Algebra Appl..

[24]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[25]  Jun Zhang,et al.  BILUTM: A Domain-Based Multilevel Block ILUT Preconditioner for General Sparse Matrices , 1999, SIAM J. Matrix Anal. Appl..

[26]  Robert Bridson,et al.  A Structural Diagnosis of Some IC Orderings , 2000, SIAM J. Sci. Comput..

[27]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[28]  I. Duff,et al.  The effect of ordering on preconditioned conjugate gradients , 1989 .

[29]  P. Vassilevski,et al.  ON GENERALIZING THE AMG FRAMEWORK , 2003 .

[30]  Yousef Saad,et al.  ILUT: A dual threshold incomplete LU factorization , 1994, Numer. Linear Algebra Appl..

[31]  Nicholas I. M. Gould,et al.  A numerical evaluation of HSL packages for the direct solution of large sparse, symmetric linear systems of equations , 2004, TOMS.