The demand for random numbers in scientific applications is increasing. However, the most widely used multiplicative, congruential random-number generators with modulus 2<supscrpt>31</supscrpt> − 1 have a cycle length of about 2.1 × 10<supscrpt>9</supscrpt>. Moreover, developing portable and efficient generators with a larger modulus such as 2<supscrpt>61</supscrpt> − 1 is more difficult than those with modulus 2<supscrpt>31</supscrpt> − 1. This article presents the development of multiplicative, congruential generators with modulus <italic>m</italic> = 2<supscrpt><italic>p</italic></supscrpt> − 1 and four forms of multipliers: 2<supscrpt><italic>k</italic>1</supscrpt> &minus 2<supscrpt><italic>k</italic>2</supscrpt>, 2<supscrpt><italic>k</italic>1</supscrpt> + 2<supscrpt><italic>k</italic>2</supscrpt>, <italic>m</italic> − 2<supscrpt><italic>k</italic>1</supscrpt> + 2<supscrpt><italic>k</italic>2</supscrpt>, and <italic>m</italic> − 2<supscrpt><italic>k</italic>1</supscrpt> − 2<supscrpt><italic>k</italic>2</supscrpt>, <italic>k</italic>1 > <italic>k</italic>2. The multipliers for modulus 2<supscrpt>31</supscrpt> − 1 and 2<supscrpt>61</supscrpt> − 1 are measured by spectral tests, and the best ones are presented. The generators with these multipliers are portable and vary fast. They have also passed several empirical tests, including the frequency test, the run test, and the maximum-of-t test.
[1]
Scott Kirkpatrick,et al.
A very fast shift-register sequence random number generatorjournal of computational physics
,
1981
.
[2]
W. H. Payne,et al.
Coding the Lehmer pseudo-random number generator
,
1969,
CACM.
[3]
Donald E. Knuth.
The Art of Computer Programming 2 / Seminumerical Algorithms
,
1971
.
[4]
L AndersonStuart.
Random number generations generators on Vector supercomputers and other advanced architectures
,
1990
.
[5]
L. R. Moore,et al.
An Exhaustive Analysis of Multiplicative Congruential Random Number Generators with Modulus $2^{31} - 1$
,
1986
.
[6]
W. Selke,et al.
Cluster-flipping Monte Carlo algorithm and correlations in good' random number generators
,
1993
.
[7]
S. K. Park,et al.
Random number generators: good ones are hard to find
,
1988,
CACM.
[8]
Donald E. Knuth,et al.
The art of computer programming. Vol.2: Seminumerical algorithms
,
1981
.
[9]
Donald Ervin Knuth,et al.
The Art of Computer Programming
,
1968
.
[10]
Stuart L. Anderson,et al.
Random Number Generators on Vector Supercomputers and Other Advanced Architectures
,
1990,
SIAM Rev..
[11]
Linus Schrage,et al.
A More Portable Fortran Random Number Generator
,
1979,
TOMS.