A parametric branch and bound approach to suboptimal explicit hybrid MPC

In this article we present a parametric branch and bound algorithm for computation of optimal and suboptimal solutions to parametric mixed-integer quadratic programs and parametric mixed-integer linear programs. The algorithm returns an optimal or suboptimal parametric solution with the level of suboptimality requested by the user. An interesting application of the proposed parametric branch and bound procedure is suboptimal explicit MPC for hybrid systems, where the introduced user-defined suboptimality tolerance reduces the storage requirements and the online computational effort, or even enables the computation of a suboptimal MPC controller in cases where the computation of the optimal MPC controller would be intractable. Moreover, stability of the system in closed loop with the suboptimal controller can be guaranteed a priori.

[1]  Mato Baotic,et al.  Multi-Parametric Toolbox (MPT) , 2004, HSCC.

[2]  E. Pistikopoulos,et al.  A multiparametric programming approach for linear process engineering problems under uncertainty , 1997 .

[3]  Mato Baotić,et al.  Optimal control of piecewise affine systems - a multi-parametric approach , 2005 .

[4]  Panos M. Pardalos,et al.  Quadratic programming with one negative eigenvalue is NP-hard , 1991, J. Glob. Optim..

[5]  Efstratios N. Pistikopoulos,et al.  An Algorithm for the Solution of Multiparametric Mixed Integer Linear Programming Problems , 2000, Ann. Oper. Res..

[6]  Manfred Morari,et al.  A Multiresolution Approximation Method for Fast Explicit Model Predictive Control , 2011, IEEE Transactions on Automatic Control.

[7]  G. Nemhauser,et al.  Integer Programming , 2020 .

[8]  David Q. Mayne,et al.  Model predictive control: Recent developments and future promise , 2014, Autom..

[9]  W. P. M. H. Heemels,et al.  Predictive control of hybrid systems: Input-to-state stability results for sub-optimal solutions , 2009, Autom..

[10]  Garth P. McCormick,et al.  Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..

[11]  R. Horst,et al.  DC Programming: Overview , 1999 .

[12]  Marko Bacic,et al.  Model predictive control , 2003 .

[13]  Bart De Schutter,et al.  Equivalence of hybrid dynamical models , 2001, Autom..

[14]  J. Aplevich,et al.  Lecture Notes in Control and Information Sciences , 1979 .

[15]  Toshihide Ibaraki,et al.  Using branch-and-bound algorithms to obtain suboptimal solutions , 1983, Z. Oper. Research.

[16]  E. Pistikopoulos,et al.  A multiparametric programming approach for mixed-integer quadratic engineering problems , 2002 .

[17]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[18]  Alberto Bemporad,et al.  Feasible mode Enumeration and Cost Comparison for Explicit quadratic Model predictive control of Hybrid Systems , 2006, ADHS.

[19]  Manfred Morari,et al.  Improved complexity analysis of branch and bound for hybrid MPC , 2010, 49th IEEE Conference on Decision and Control (CDC).

[20]  Manfred Morari,et al.  Suboptimal Explicit Hybrid MPC Via Branch and Bound , 2011 .

[21]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[22]  B. Bank,et al.  Non-Linear Parametric Optimization , 1983 .

[23]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).