A total variation based nonrigid image registration by combining parametric and non-parametric transformation models

To overcome the conflict between the global robustness and the local accuracy of dense nonrigid image registration, we propose a union registration approach by combining parametric and non-parametric transformation models. On one hand, to guarantee the robustness, we constrain the displacement field @f using a mapping difference metric between the B-spline parametric space @J and the non-parametric transformation space @F. On the other hand, to correct the densely and highly localized geometrical distortions, we introduce a total variation (TV) regularization term for the displacement field @f. Accounting for the effect of spatially varying intensity distortions, the residual complexity (RC) is used as the similarity metric. Moreover, to solve the proposed union nonrigid registration, which is a composite convex optimization problem by the smooth @?"2 term and the non-smooth @?"1 term (TV), we design a two-stage algorithm using split Bregman iteration. Experiments with both synthetic and real images from different domains illustrate that this approach can capture the local details of transformation accurately and effectively while being robust to the spatially varying intensity distortions.

[1]  Jan Modersitzki,et al.  Numerical Methods for Image Registration , 2004 .

[2]  Alan C. Evans,et al.  BrainWeb: Online Interface to a 3D MRI Simulated Brain Database , 1997 .

[3]  Marc Modat,et al.  Efficient dense non-rigid registration using the free-form deformation framework , 2012 .

[4]  Xiang Zhu,et al.  Removing Atmospheric Turbulence via Space-Invariant Deconvolution , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  R. J. Althof,et al.  A rapid and automatic image registration algorithm with subpixel accuracy , 1997, IEEE Transactions on Medical Imaging.

[6]  Pramode K. Verma,et al.  Dense image registration using sparse coding and belief propagation , 2011, ICSPCS.

[7]  Peihua Qiu,et al.  Intensity-Based Image Registration by Nonparametric Local Smoothing , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  D. Hill,et al.  Non-rigid image registration: theory and practice. , 2004, The British journal of radiology.

[9]  Michael J. Black,et al.  Secrets of optical flow estimation and their principles , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[10]  Frédéric Dufaux,et al.  Efficient, robust, and fast global motion estimation for video coding , 2000, IEEE Trans. Image Process..

[11]  Bernhard Schölkopf,et al.  Efficient filter flow for space-variant multiframe blind deconvolution , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[13]  Rasmus Larsen,et al.  Adaptive parametrization of multivariate B-splines for image registration , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  Ying Wu,et al.  Sparsity model for robust optical flow estimation at motion discontinuities , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  Tianzi Jiang,et al.  Fingerprint registration by maximization of mutual information , 2006, IEEE Transactions on Image Processing.

[16]  Nikos Komodakis,et al.  Fast, Approximately Optimal Solutions for Single and Dynamic MRFs , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Max A. Viergever,et al.  elastix: A Toolbox for Intensity-Based Medical Image Registration , 2010, IEEE Transactions on Medical Imaging.

[18]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[19]  Alain Trouvé,et al.  Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms , 2005, International Journal of Computer Vision.

[20]  Dinggang Shen,et al.  Learning-based deformable registration of MR brain images , 2006, IEEE Transactions on Medical Imaging.

[21]  Michael J. Black,et al.  On the Spatial Statistics of Optical Flow , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[22]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[23]  Daniel Rueckert,et al.  Nonrigid registration using free-form deformations: application to breast MR images , 1999, IEEE Transactions on Medical Imaging.

[24]  B. S. Manjunath,et al.  A contour-based approach to multisensor image registration , 1995, IEEE Trans. Image Process..

[25]  Arno Klein,et al.  Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration , 2009, NeuroImage.

[26]  N Saeed,et al.  Magnetic resonance image segmentation using pattern recognition, and applied to image registration and quantitation , 1998, NMR in biomedicine.

[27]  J. Mixter Fast , 2012 .

[28]  Nikos Paragios,et al.  Deformable Medical Image Registration: A Survey , 2013, IEEE Transactions on Medical Imaging.

[29]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[30]  Sung Yong Shin,et al.  Scattered Data Interpolation with Multilevel B-Splines , 1997, IEEE Trans. Vis. Comput. Graph..

[31]  Jan Modersitzky,et al.  FAIR - Flexible Algorithms for Image Registration , 2009, Fundamentals of algorithms.

[32]  Nassir Navab,et al.  Approximated Curvature Penalty in Non-rigid Registration Using Pairwise MRFs , 2009, ISVC.

[33]  Daniel Rueckert,et al.  Registration Using Sparse Free-Form Deformations , 2012, MICCAI.

[34]  Haiying Liu,et al.  A Generic Framework for Non-rigid Registration Based on Non-uniform Multi-level Free-Form Deformations , 2001, MICCAI.

[35]  Brian B. Avants,et al.  Directly Manipulated Free-Form Deformation Image Registration , 2009, IEEE Transactions on Image Processing.

[36]  Tom Vercauteren,et al.  Diffeomorphic demons: Efficient non-parametric image registration , 2009, NeuroImage.

[37]  Daniel Rueckert,et al.  Non-rigid registration using free-form deformations , 2015 .

[38]  Andriy Myronenko,et al.  Intensity-Based Image Registration by Minimizing Residual Complexity , 2010, IEEE Transactions on Medical Imaging.

[39]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[40]  Ben Glocker,et al.  Deformable medical image registration: setting the state of the art with discrete methods. , 2011, Annual review of biomedical engineering.

[41]  Jean-Philippe Thirion,et al.  Image matching as a diffusion process: an analogy with Maxwell's demons , 1998, Medical Image Anal..

[42]  Daniel Rueckert,et al.  Temporal sparse free-form deformations , 2013, Medical Image Anal..

[43]  Hanqing Zhao,et al.  A fast algorithm for the total variation model of image denoising , 2010, Adv. Comput. Math..

[44]  Daniel Cremers,et al.  An Improved Algorithm for TV-L 1 Optical Flow , 2009, Statistical and Geometrical Approaches to Visual Motion Analysis.

[45]  Yuandong Tian,et al.  Seeing through water: Image restoration using model-based tracking , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[46]  Mark Holden,et al.  A Review of Geometric Transformations for Nonrigid Body Registration , 2008, IEEE Transactions on Medical Imaging.

[47]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[48]  Jan Modersitzki,et al.  Combining Homogenization and Registration , 2006, WBIR.

[49]  A. Ardeshir Goshtasby,et al.  2-D and 3-D Image Registration: for Medical, Remote Sensing, and Industrial Applications , 2005 .