CO2, brainstem chemoreceptors and breathing

The regulation of breathing relies upon chemical feedback concerning the levels of CO2 and O2. The carotid bodies, which detect O2, provide tonic excitation to brainstem respiratory neurons under normal conditions and dramatic excitation if O2 levels fall. Feedback for CO2 involves the carotid body and receptors in the brainstem, central chemoreceptors. Small increases in CO2 produce large increases in breathing. Decreases in CO2 below normal can, in sleep and anesthesia, decrease breathing, even to apnea. Central chemoreceptors, once thought localized to the surface of the ventral medulla, are likely distributed more widely with sites presently identified in the: (1) ventrolateral medulla; (2) nucleus of the solitary tract; (3) ventral respiratory group; (4) locus ceruleus; (5) caudal medullary raphé; and (6) fastigial nucleus of the cerebellum. Why so many chemoreceptor sites? Hypotheses, some with supporting data, include the following. Geographical specificity; all regions of the brainstem with respiratory neurons contain chemoreceptors. Stimulus intensity; some sites operate in the physiological range of CO2 values, others only with more extreme changes. Stimulus specificity; CO2 or pH may be sensed by multiple mechanisms. Temporal specificity; some sites respond more quickly to changes on blood or brain CO2 or pH. Syncytium; chemosensitive neurons may be connected via low resistance, gap junctions. Arousal state: sites may vary in effectiveness and importance dependent on state of arousal. Overall, as judged by experiments of nature, and in the laboratory, central chemoreceptors are critical for adequate breathing in sleep, but other aspects of the control system can maintain breathing in wakefulness.

[1]  A. W. Crompton,et al.  Evolution of homeothermy in mammals , 1978, Nature.

[2]  H. Forster,et al.  Ventilatory responses to cooling the ventrolateral medullary surface of awake and anesthetized goats. , 1995, Journal of applied physiology.

[3]  H. Loeschcke Central chemosensitivity and the reaction theory. , 1982, The Journal of physiology.

[4]  J. C. Smith,et al.  Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. , 1991, Science.

[5]  M. Schlaefke Central chemosensitivity: a respiratory drive. , 1981, Reviews of physiology, biochemistry and pharmacology.

[6]  A. Guz,et al.  The influence of induced hypocapnia and sleep on the endogenous respiratory rhythm in humans. , 1991, The Journal of physiology.

[7]  L. Kubin,et al.  Central pathways of pulmonary and airway vagal afferents , 1995 .

[8]  S. Kuna,et al.  Hypercarbic periodic breathing during sleep in a child with a central nervous system tumor. , 1990, The American review of respiratory disease.

[9]  J. V. van Beek,et al.  Central respiratory CO2 sensitivity at extreme hypocapnia. , 1984, Respiration physiology.

[10]  H. Kiwull-Schöne,et al.  Hypoxia and the "reaction theory" of central respiratory chemosensitivity. , 1992, Advances in experimental medicine and biology.

[11]  H. Rigatto,et al.  In search of the real respiratory neurons: culture of medullary fetal cells sensitive to CO2 and low pH. , 1994, Biology of the neonate.

[12]  W. M. St -John,et al.  Genesis of rhythmic respiratory activity in pons independent of medulla. , 1985, Journal of applied physiology.

[13]  H. Tojima,et al.  Differential respiratory effects of HCO3- and CO2 applied on ventral medullary surface of rats. , 1991, Journal of applied physiology.

[14]  N. Cherniack,et al.  CO2-induced c-fos expression in the CNS catecholaminergic neurons. , 1996, Respiration physiology.

[15]  J. Feldman,et al.  PreBötzinger complex and pacemaker neurons: hypothesized site and kernel for respiratory rhythm generation. , 1998, Annual review of physiology.

[16]  A. Berssenbrugge,et al.  The effects of carotid body hypocapnia on ventilation in goats. , 1990, Respiration physiology.

[17]  J. Veening,et al.  Hypercapnia induces c-fos expression in neurons of retrotrapezoid nucleus in cats , 1994, Brain Research.

[18]  E. Nattie,et al.  Retrotrapezoid nucleus lesions decrease phrenic activity and CO2 sensitivity in rats. , 1994, Respiration physiology.

[19]  J. Feldman,et al.  Interaction of pulmonary afferents and pneumotaxic center in control of respiratory pattern in cats. , 1976, Journal of neurophysiology.

[20]  J. Leiter,et al.  Central chemoreceptor stimulus in the terrestrial, pulmonate snail, Helix aspersa. , 1994, Respiration physiology.

[21]  R. A. King,et al.  Apneustic breathing after vagotomy in cats with chronic pneumotaxic center lesions. , 1971, Respiration physiology.

[22]  A. Berkenbosch,et al.  Relative contribution of central and peripheral chemoreceptors to the ventilatory response to CO2 during hyperoxia. , 1979, Respiration physiology.

[23]  J A Neubauer,et al.  Modulation of respiration during brain hypoxia. , 1990, Journal of applied physiology.

[24]  J. Dempsey,et al.  Ventilatory effects of specific carotid body hypocapnia in dogs during wakefulness and sleep. , 1995, Journal of applied physiology.

[25]  R. Putnam,et al.  Intracellular pH response to hypercapnia in neurons from chemosensitive areas of the medulla. , 1997, The American journal of physiology.

[26]  J Duffin,et al.  Breathing Rhythm Generation: Focus on the Rostral Ventrolateral Medulla , 1995 .

[27]  E. Nattie,et al.  CO(2) microdialysis in retrotrapezoid nucleus of the rat increases breathing in wakefulness but not in sleep. , 1999, Journal of applied physiology.

[28]  A. Guz,et al.  Unilateral focal lesions in the rostrolateral medulla influence chemosensitivity and breathing measured during wakefulness, sleep, and exercise , 1999, Journal of neurology, neurosurgery, and psychiatry.

[29]  J. Leiter,et al.  Diethyl pyrocarbonate (DEPC) inhibits CO2 chemosensitivity in Helix aspersa. , 1998, Respiration physiology.

[30]  H. M. Geller,et al.  Chemosensitivity of medullary neurons in explant tissue cultures , 1991, Neuroscience.

[31]  H. Forster Ventilatory effects of glial dysfunction in a rat brain stem chemoreceptor region". , 1998, Journal of applied physiology.

[32]  M. Kryger,et al.  Principles and Practice of Sleep Medicine , 1989 .

[33]  B. Fink,et al.  Influence of cerebral activity in wakefulness on regulation of breathing. , 1962, Journal of applied physiology.

[34]  E. Nattie,et al.  Lesions in retrotrapezoid nucleus decrease ventilatory output in anesthetized or decerebrate cats. , 1991, Journal of applied physiology.

[35]  M. Denavit-Saubié,et al.  Localization of chemosensitive structures in the isolated brainstem of adult guinea‐pig. , 1995, The Journal of physiology.

[36]  E. Nattie,et al.  Focal central chemoreceptor sensitivity in the RTN studied with a CO2 diffusion pipette in vivo. , 1997, Journal of applied physiology.

[37]  H. Forster,et al.  Effects of cooling the ventrolateral medulla on diaphragm activity during NREM sleep. , 1996, Respiration physiology.

[38]  D. Reis,et al.  Hypoxia selectively excites vasomotor neurons of rostral ventrolateral medulla in rats. , 1994, The American journal of physiology.

[39]  E. Nattie,et al.  Ventral medulla sites of muscarinic receptor subtypes involved in cardiorespiratory control. , 1990, Journal of applied physiology.

[40]  R. Reeves The interaction of body temperature and acid-base balance in ectothermic vertebrates. , 1977, Annual review of physiology.

[41]  J. Severinghaus,et al.  Respiratory responses mediated through superficial chemosensitive areas on the medulla , 1963, Journal of applied physiology.

[42]  W M St John,et al.  Responses of bulbospinal and laryngeal respiratory neurons to hypercapnia and hypoxia. , 1985, Journal of applied physiology.

[43]  C. Trouth Ventral Brainstem Mechanisms and Control of Respiration and Blood Pressure , 1995 .

[44]  S. Lahiri,et al.  Carbonic anhydrase and chemoreception in the cat carotid body. , 1991, The American journal of physiology.

[45]  J. Dempsey,et al.  Central-peripheral chemoreceptor interaction in awake cerebrospinal fluid-perfused goats. , 1984, Journal of applied physiology: respiratory, environmental and exercise physiology.

[46]  J. Erlichman,et al.  Ventilatory effects of glial dysfunction in a rat brain stem chemoreceptor region. , 1998, Journal of applied physiology.

[47]  F. Issa,et al.  Effect of route of breathing on the ventilatory and arousal responses to hypercapnia in awake and sleeping dogs. , 1993, The Journal of physiology.

[48]  L. Kempe Handbook of Physiology. Section I. The Nervous System , 1982 .

[49]  J. Remmers,et al.  Identification of a subsurface area in the ventral medulla sensitive to local changes in PCO2. , 1992, Journal of applied physiology.

[50]  J. C. Smith,et al.  Neural control of respiratory pattern in mammals: an overview , 1995 .

[51]  A. Malan,et al.  Intracellular pH in cold-blooded vertebrates as a function of body temperature. , 1976, Respiration physiology.

[52]  J A Neubauer,et al.  Ventral medullary pH and ventilatory responses to hyperperfusion and hypoxia. , 1985, Journal of applied physiology.

[53]  M. Marjanovic,et al.  The Temperature Dependence of Intracellular pH in Isolated Frog Skeletal Muscle: Lessons Concerning the Na+-H+ Exchanger , 1998, The Journal of Membrane Biology.

[54]  J. Erlichman,et al.  Cell–cell coupling between CO2-excited neurons in the dorsal medulla oblongata , 1997, Neuroscience.

[55]  D. Spray,et al.  Gap junctions in the brain: where, what type, how many and why? , 1993, Trends in Neurosciences.

[56]  J. Lipski,et al.  An intracellular study of respiratory neurons in the rostral ventrolateral medulla of the rat and their relationship to catecholamine‐containing neurons , 1990, The Journal of comparative neurology.

[57]  J. Neubauer,et al.  Peripheral and central effects of hypoxia , 1995 .

[58]  C. Hunt,et al.  Congenital central hypoventilation syndrome: diagnosis, management, and long-term outcome in thirty-two children. , 1992, The Journal of pediatrics.

[59]  H. Forster,et al.  Important role of carotid afferents in control of breathing. , 1998, Journal of applied physiology.

[60]  M. Gdovin,et al.  Retrotrapezoid nucleus glutamate receptors: control of CO2-sensitive phrenic and sympathetic output. , 1993, Journal of applied physiology.

[61]  H. Kinney,et al.  Decreased muscarinic receptor binding in the arcuate nucleus in sudden infant death syndrome , 1995, Science.

[62]  J. Neubauer,et al.  CO2 sensitivity of cat phrenic neurogram during hypoxic respiratory depression. , 1988, Journal of applied physiology.

[63]  J. Ramirez,et al.  Selective lesioning of the cat pre‐Bötzinger complex in vivo eliminates breathing but not gasping , 1998, The Journal of physiology.

[64]  T. Sears,et al.  Reciprocal tonic activation of inspiratory and expiratory motoneurones by chemical drives , 1982, Nature.

[65]  E. Nattie Diethyl pyrocarbonate (an imidazole binding substance) inhibits rostral VLM CO2 sensitivity. , 1986, Journal of applied physiology.

[66]  H. Kazemi,et al.  Ventilatory output and acetylcholine: perturbations in release and muscarinic receptor activation. , 1994, Journal of applied physiology.

[67]  K. Cooney,et al.  Ventilatory effects of kainic acid injection of the ventrolateral solitary nucleus. , 1982, Journal of applied physiology: respiratory, environmental and exercise physiology.

[68]  J. Voipio,et al.  Mechanism of action of GABA on intracellular pH and on surface pH in crayfish muscle fibres. , 1990, The Journal of physiology.

[69]  D. Richter Neural Regulation of Respiration: Rhythmogenesis and Afferent Control , 1996 .

[70]  Uwe Windhorst,et al.  Comprehensive Human Physiology , 1996, Springer Berlin Heidelberg.

[71]  P. Okunieff,et al.  1H-NMR measurement of fractional dissociation of imidazole in intact animals. , 1994, The American journal of physiology.

[72]  F. Wallois,et al.  c-fos-like immunoreactivity in the cat's neuraxis following moderate hypoxia or hypercapnia , 1994, Journal of Physiology-Paris.

[73]  A. Farrell,et al.  The Evolution of Air Breathing in Vertebrates , 1981 .

[74]  Howell Bj Acid-base balance in transition from water breathing to air breathing. , 1970 .

[75]  Bruce R. Ransom,et al.  pH and brain function , 1998 .

[76]  G. Aghajanian,et al.  Carbon dioxide regulates the tonic activity of locus coeruleus neurons by modulating a proton- and polyamine-sensitive inward rectifier potassium current , 1997, Neuroscience.

[77]  J. N. Cameron Acid-Base Homeostasis: Past and Present Perspectives , 1989, Physiological Zoology.

[78]  J. Orem,et al.  Postinspiratory neuronal activities during behavioral control, sleep, and wakefulness. , 1992, Journal of applied physiology.

[79]  W. T. Lipscomb,et al.  Neurophysiological investigations of medullary chemosensitive areas of respiration. , 1972, Respiration physiology.

[80]  M. Kuno,et al.  Differential effects of carbon dioxide and pH on central chemoreceptors in the rat in vitro. , 1985, The Journal of physiology.

[81]  R. Miles Does low pH stimulate central chemoreceptors located near the ventral medullary surface? , 1983, Brain Research.

[82]  E. Nattie,et al.  Fluorescence location of RVLM kainate microinjections that alter the control of breathing. , 1990, Journal of applied physiology.

[83]  G. Richerson,et al.  Chemosensitivity of rat medullary raphe neurones in primary tissue culture , 1998, The Journal of physiology.

[84]  N. Smatresk Respiratory Control in the Transition from Water to Air Breathing in Vertebrates , 1994 .

[85]  W. M. St John,et al.  Neurogenesis of patterns of automatic ventilatory activity. , 1998 .

[86]  G. Corbo,et al.  An uncommon case of brainstem tumor with selective involvement of the respiratory centers. , 1993, Chest.

[87]  F. Kao,et al.  Effects of graded focal cold block in rostral areas of the medulla. , 1985, Acta physiologica Scandinavica.

[88]  J. Nicholls,et al.  Chemosensory and cholinergic stimulation of fictive respiration in isolated cns of neonatal opossum , 1997, The Journal of physiology.

[89]  P. Lavie,et al.  [Control of breathing during sleep]. , 1983, Harefuah.

[90]  A. Dahan,et al.  Expression of c‐fos in the rat brainstem after exposure to hypoxia and to normoxic and hyperoxic hypercapnia , 1997, The Journal of comparative neurology.

[91]  P. Gluckman,et al.  Lateral pontine lesions affect central chemosensitivity in unanesthetized fetal lambs. , 1989, Journal of applied physiology.

[92]  J. Pappenheimer,et al.  Studies on the respiratory response to disturbances of acid-base balance, with deductions concerning the ionic composition of cerebral interstitial fluid. , 1966, The American journal of physiology.

[93]  J. Cooper,et al.  Critical dependence of respiratory rhythmicity on metabolic CO2 load. , 1981, Journal of applied physiology: respiratory, environmental and exercise physiology.

[94]  J A Dempsey,et al.  Mediation of Ventilatory Adaptations. , 1982, Physiological reviews.

[95]  J. Praud,et al.  Abolition of breathing rhythmicity in lambs by CO2 unloading in the first hours of life. , 1997, Respiration physiology.

[96]  E. Nattie The alphastat hypothesis in respiratory control and acid-base balance. , 1990, Journal of applied physiology.

[97]  E. C. Crawford,et al.  Changes in respiratory functions during metamorphosis of the bullfrog, Rana catesbeiana. , 1973, Respiration physiology.

[98]  E. Nattie,et al.  Acetazolamide on the ventral medulla of the cat increases phrenic output and delays the ventilatory response to CO2. , 1991, The Journal of physiology.

[99]  D. Ballantyne,et al.  Chemosensitive medullary neurones in the brainstem‐‐spinal cord preparation of the neonatal rat. , 1996, The Journal of physiology.

[100]  J. Orem The nature of the wakefulness stimulus for breathing. , 1990, Progress in clinical and biological research.

[101]  J. Kiley,et al.  Respiratory responses to medullary hydrogen ion changes in cats: different effects of respiratory and metabolic acidoses. , 1985, The Journal of physiology.

[102]  H. Borison,et al.  Dynamics of respiratory VT response to isocapnic pHa forcing in chemodenervated cats. , 1978, Journal of applied physiology: respiratory, environmental and exercise physiology.

[103]  J. C. Hwang,et al.  A single minute lesion around the ventral respiratory group in medulla produces fatal apnea in cats. , 1998, Journal of the autonomic nervous system.

[104]  G. Richerson Response to CO2 of neurons in the rostral ventral medulla in vitro. , 1995, Journal of neurophysiology.

[105]  H. Arita,et al.  ECF pH dynamics within the ventrolateral medulla: a microelectrode study. , 1989, Journal of applied physiology.

[106]  T. Waldrop,et al.  In vitro responses of caudal hypothalamic neurons to hypoxia and hypercapnia , 1992, Neuroscience.

[107]  H. Forster,et al.  Effects on breathing of ventrolateral medullary cooling in awake goats. , 1995, Journal of applied physiology.

[108]  R. Crystal,et al.  The Lung: Scientific Foundations , 1991 .

[109]  Leusen Ir Chemosensitivity of the respiratory center; influence of CO2 in the cerebral ventricles on respiration. , 1953 .

[110]  N. Lassen Is central chemoreceptor sensitive to intracellular rather than extracellular pH? , 1990, Clinical physiology.

[111]  D. Frazier,et al.  Cerebellar modulation of ventilatory response to progressive hypercapnia. , 1994, Journal of applied physiology.

[112]  G. Somero,et al.  Proteins and temperature. , 1995, Annual review of physiology.

[113]  S. Ngai,et al.  Medullary surface chemoreceptors and regulation of respiration in the cat. , 1967, Journal of applied physiology.

[114]  R B Lufkin,et al.  Localization of putative neural respiratory regions in the human by functional magnetic resonance imaging. , 1994, Journal of applied physiology.

[115]  E. Nattie Ventilation during acute HCl infusion in intact and chemodenervated conscious rabbits. , 1983, Respiration physiology.

[116]  E. Nattie,et al.  Evidence for central chemoreception in the midline raphé. , 1996, Journal of applied physiology.

[117]  D. Richter,et al.  Blockade of synaptic inhibition within the pre‐Bötzinger complex in the cat suppresses respiratory rhythm generation in vivo , 1998, The Journal of physiology.

[118]  J. Champagnat,et al.  Central control of breathing in mammals: neuronal circuitry, membrane properties, and neurotransmitters. , 1995, Physiological reviews.

[119]  N. Staub,et al.  Basic Respiratory Physiology , 1991 .

[120]  N. Lassen,et al.  Neuronal pH Regulation: Constant Normal Intracellular pH is Maintained in Brain during Low Extracellular pH Induced by Acetazolamide—31P NMR Study , 1989, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[121]  L. Gattinoni,et al.  An alternative to breathing. , 1978, The Journal of thoracic and cardiovascular surgery.

[122]  B. A. Gray Response of the perfused carotid body to changes in pH and PCO2. , 1968, Respiration physiology.

[123]  J. Severinghaus,et al.  Effects of acetazolamide on cerebral acid-base balance. , 1988, Journal of applied physiology.

[124]  J. Leiter,et al.  CO2 chemoreception in the pulmonate snail, Helix aspersa. , 1993, Respiration physiology.

[125]  M. I. Cohen Discharge patterns of brain-stem respiratory neurons in relation to carbon dioxide tension. , 1968, Journal of neurophysiology.

[126]  J. Remmers,et al.  Electrophysiological properties of rostral medullary respiratory neurones in the cat: an intracellular study. , 1988, The Journal of physiology.

[127]  H. Rahn,et al.  Ontogeny of acid-base balance in the bullfrog and chicken. , 1970, Respiration physiology.

[128]  D. Morin,et al.  Acetylcholine and central chemosensitivity: in vitro study in the newborn rat. , 1990, Respiration physiology.

[129]  H. Rahn Why are pH of 7.4 and PCO2 of 40 normal values for man? , 1976, Bulletin europeen de physiopathologie respiratoire.

[130]  E. Murphy,et al.  Primary role of respiratory afferents in sustaining breathing rhythm. , 1978, Journal of applied physiology: respiratory, environmental and exercise physiology.

[131]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[132]  R. Vaughan-Jones,et al.  Effects of extracellular pH, PCO2 and HCO3‐ on intracellular pH in isolated type‐I cells of the neonatal rat carotid body. , 1991, The Journal of physiology.

[133]  N. Kogo,et al.  In vivo study on medullary H(+)-sensitive neurons. , 1990, Journal of applied physiology.

[134]  E. Nattie,et al.  Central chemoreception in the region of the ventral respiratory group in the rat. , 1996, Journal of applied physiology.

[135]  B. Ransom Glial modulation of neural excitability mediated by extracellular pH: a hypothesis. , 1992, Progress in brain research.

[136]  H. Rahn,et al.  Aquatic gas exchange: theory. , 1966, Respiration physiology.

[137]  J. Dempsey,et al.  Effects of specific carotid body and brain hypoxia on respiratory muscle control in the awake goat. , 1993, The Journal of physiology.

[138]  I A Silver,et al.  Intracellular and extracellular changes of [Ca2+] in hypoxia and ischemia in rat brain in vivo , 1990, The Journal of general physiology.

[139]  A. Basbaum,et al.  Medullary CO2 chemoreceptor neuron identification by c-fos immunocytochemistry. , 1992, Journal of applied physiology.

[140]  Allan I. Pack,et al.  Regulation of breathing , 1994 .