Non-Gaussian characteristics of exponential autoregressive processes

[1]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[2]  M. B. Priestley,et al.  Non-linear and non-stationary time series analysis , 1990 .

[3]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[4]  Statistical Identification of Nonlinear Random Vibration Systems , 1989 .

[5]  Thomas K. Caughey,et al.  Derivation and Application of the Fokker-Planck Equation to Discrete Nonlinear Dynamic Systems Subjected to White Random Excitation , 1963 .

[6]  T. Ozaki,et al.  Non-linear time series models for non-linear random vibrations , 1980, Journal of Applied Probability.

[7]  T. Ozaki 2 Non-linear time series models and dynamical systems , 1985 .

[8]  P. Caines Stationary linear and non-linear system identification and predictor set completeness , 1977 .

[9]  R. Tweedie Sufficient conditions for ergodicity and recurrence of Markov chains on a general state space , 1975 .

[10]  Tohru Ozaki,et al.  Statistical Identification of Storage Models with Application to Stochastic Hydrology , 1985 .

[11]  Lennart Ljung,et al.  On The Consistency of Prediction Error Identification Methods , 1976 .

[12]  S. M. Pandit,et al.  Unique estimates of the parameters of a continuous stationary stochastic process , 1975 .

[13]  T. Ozaki,et al.  Modelling nonlinear random vibrations using an amplitude-dependent autoregressive time series model , 1981 .

[14]  J. F. C. Kingman,et al.  Information and Exponential Families in Statistical Theory , 1980 .