Fault detection and isolation in hybrid process systems using a combined data‐driven and observer‐design methodology

[1]  E. Lima,et al.  Modeling and performance monitoring of multivariate multimodal processes , 2013 .

[2]  Kup-Sze Choi,et al.  Minimum-maximum local structure information for feature selection , 2013, Pattern Recognit. Lett..

[3]  Si-Zhao Joe Qin,et al.  Survey on data-driven industrial process monitoring and diagnosis , 2012, Annu. Rev. Control..

[4]  Uwe Kruger,et al.  Statistical monitoring of complex multivariate processes : with applications in industrial process control , 2012 .

[5]  Udo Schubert,et al.  Input reconstruction for statistical‐based fault detection and isolation , 2012 .

[6]  Ahmet Palazoglu,et al.  Process pattern construction and multi-mode monitoring , 2012 .

[7]  Ahmet Palazoglu,et al.  Transition Process Modeling and Monitoring Based on Dynamic Ensemble Clustering and Multiclass Support Vector Data Description , 2011 .

[8]  Udo Schubert,et al.  Unified model-based fault diagnosis for three industrial application studies , 2011 .

[9]  Nael H. El-Farra,et al.  Robust fault detection and monitoring of hybrid process systems with uncertain mode transitions , 2010, 49th IEEE Conference on Decision and Control (CDC).

[10]  Ping Zhang,et al.  Subspace method aided data-driven design of fault detection and isolation systems , 2009 .

[11]  Nael H. El-Farra,et al.  Robust actuator fault isolation and management in constrained uncertain parabolic PDE systems , 2009, Autom..

[12]  Panagiotis D. Christofides,et al.  Data-based fault detection and isolation using feedback control: Output feedback and optimality , 2009 .

[13]  S. Qin,et al.  Multimode process monitoring with Bayesian inference‐based finite Gaussian mixture models , 2008 .

[14]  N.H. El-Farra,et al.  A unified framework for detection, isolation and compensation of actuator faults in uncertain particulate processes , 2008, 2008 American Control Conference.

[15]  Nina F. Thornhill,et al.  A continuous stirred tank heater simulation model with applications , 2008 .

[16]  Panagiotis D. Christofides,et al.  Enhancing Data-based Fault Isolation Through Nonlinear Control , 2008 .

[17]  Nael H. El-Farra,et al.  Actuator fault isolation and reconfiguration in transport‐reaction processes , 2007 .

[18]  S. Ding,et al.  Sensor fault reconstruction and sensor compensation for a class of nonlinear state-space systems via a descriptor system approach , 2007 .

[19]  Luis O. Jimenez-Rodriguez,et al.  Unsupervised Linear Feature-Extraction Methods and Their Effects in the Classification of High-Dimensional Data , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Si-Zhao Joe Qin,et al.  An overview of subspace identification , 2006, Comput. Chem. Eng..

[21]  M. Saif,et al.  Fault detection and isolation based on novel unknown input observer design , 2006, 2006 American Control Conference.

[22]  Lei Xie,et al.  Statistical Monitoring of Dynamic Multivariate Processes - Part 1. Modeling Autocorrelation and Cross-correlation , 2006 .

[23]  Jiawei Han,et al.  Document clustering using locality preserving indexing , 2005, IEEE Transactions on Knowledge and Data Engineering.

[24]  Darci Odloak,et al.  Observer-based fault diagnosis in chemical plants , 2005 .

[25]  Salvador García Muñoz,et al.  Data-based latent variable methods for process analysis, monitoring and control , 2005, Comput. Chem. Eng..

[26]  S. Zhao,et al.  Monitoring of Processes with Multiple Operating Modes through Multiple Principle Component Analysis Models , 2004 .

[27]  S. Joe Qin,et al.  Statistical process monitoring: basics and beyond , 2003 .

[28]  Yi Xiong,et al.  Unknown disturbance inputs estimation based on a state functional observer design , 2003, Autom..

[29]  Raghunathan Rengaswamy,et al.  A review of process fault detection and diagnosis: Part I: Quantitative model-based methods , 2003, Comput. Chem. Eng..

[30]  Theodora Kourti,et al.  Multivariate dynamic data modeling for analysis and statistical process control of batch processes, start‐ups and grade transitions , 2003 .

[31]  Anil K. Jain,et al.  Unsupervised Learning of Finite Mixture Models , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Seongkyu Yoon,et al.  Statistical and causal model‐based approaches to fault detection and isolation , 2000 .

[33]  B. Moor,et al.  Subspace state space system identification for industrial processes , 1998 .

[34]  Jie Chen,et al.  Observer-based fault detection and isolation: robustness and applications , 1997 .

[35]  Shao-Kung Chang,et al.  Design of general structured observers for linear systems with unknown inputs , 1997 .

[36]  N. Lawrence Ricker,et al.  Decentralized control of the Tennessee Eastman Challenge Process , 1996 .

[37]  B. Moor,et al.  Subspace identification for linear systems , 1996 .

[38]  Mehrdad Saif,et al.  A new approach to robust fault detection and identification , 1993 .

[39]  E. F. Vogel,et al.  A plant-wide industrial process control problem , 1993 .