Global sensitivity analysis for the design of nonlinear identification experiments

Bayesian inference techniques have been used extensively in recent years for parameter estimation in nonlinear systems. Despite the many advances made in the field, highly nonlinear systems can still be challenging to identify. Of key interest is the challenge in establishing the identifiability of the model with respect to various excitation signals and, in particular, doing so prior to the collection of experimental data. Global sensitivity analysis techniques provide a perspective on this problem that is well-suited to informing the design of identification experiments for use with Bayesian inference techniques. These methods quantify the relative importance of the parameters to the model response by decomposing the variance of the response into contributions from the respective parameters. The sensitivities obtained provide a valuable indication of the information available for parameter estimation in the response of a system to a particular excitation. In this study, nonlinear model parameters are identified based on experimental responses from a nonlinear energy sink device with the unscented Kalman filter. The experimental identification results are compared with those of a Sobol’ sensitivity analysis on the system model to demonstrate how global sensitivity analysis can be used as a method to preselect experimental excitations for use with Bayesian inference techniques.

[1]  N. Gopalakrishnan,et al.  Parameter Identification of Long Stroke and Short Stroke MR Damper for its Use in Semi-Active Vibration Control , 2016 .

[2]  D. M. McFarland,et al.  Application of broadband nonlinear targeted energy transfers for seismic mitigation of a shear frame: Computational results , 2008 .

[3]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[4]  Bin Xu,et al.  Data‐Based Model‐Free Hysteretic Restoring Force and Mass Identification for Dynamic Systems , 2015, Comput. Aided Civ. Infrastructure Eng..

[5]  Andrew W. Smyth,et al.  A marginalized unscented Kalman filter for efficient parameter estimation with applications to finite element models , 2018, Computer Methods in Applied Mechanics and Engineering.

[6]  Oleg Gendelman,et al.  Energy Pumping in Nonlinear Mechanical Oscillators: Part II—Resonance Capture , 2001 .

[7]  Eva Balsa-Canto,et al.  On the relationship between sloppiness and identifiability. , 2016, Mathematical biosciences.

[8]  Sami F. Masri,et al.  A Nonparametric Identification Technique for Nonlinear Dynamic Problems , 1979 .

[9]  Ilya M. Sobol,et al.  A Primer for the Monte Carlo Method , 1994 .

[10]  Ka-Veng Yuen,et al.  Real‐Time System Identification: An Algorithm for Simultaneous Model Class Selection and Parametric Identification , 2015, Comput. Aided Civ. Infrastructure Eng..

[11]  Anton J. Haug Bayesian Estimation and Tracking: A Practical Guide , 2012 .

[12]  Jeffrey K. Uhlmann,et al.  Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[13]  M. Fliess,et al.  Nonlinear observability, identifiability, and persistent trajectories , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[14]  Andrew W. Smyth,et al.  On the observability and identifiability of nonlinear structural and mechanical systems , 2015 .

[15]  Ralph E. Hudson,et al.  Parametric Identification of Nondegrading Hysteresis in a Laterally and Torsionally Coupled Building Using an Unscented Kalman Filter , 2013 .

[16]  Nicholas E. Wierschem,et al.  Targeted energy transfer using nonlinear energy sinks for the attenuation of transient loads on building structures , 2014 .

[17]  J. Banga,et al.  Structural Identifiability of Systems Biology Models: A Critical Comparison of Methods , 2011, PloS one.

[18]  John Skilling,et al.  Data analysis : a Bayesian tutorial , 1996 .

[19]  H.F. Durrant-Whyte,et al.  A new approach for filtering nonlinear systems , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[20]  Eleni Chatzi,et al.  Experimental application of on-line parametric identification for nonlinear hysteretic systems with model uncertainty , 2010 .

[21]  H. Pohjanpalo System identifiability based on the power series expansion of the solution , 1978 .

[22]  Maria Rodriguez-Fernandez,et al.  A hybrid approach for efficient and robust parameter estimation in biochemical pathways. , 2006, Bio Systems.

[23]  Andrea Belleri,et al.  The Influence of Overhead Cranes in the Seismic Performance of Industrial Buildings , 2017, Front. Built Environ..

[24]  Eva Balsa-Canto,et al.  Bioinformatics Applications Note Systems Biology Genssi: a Software Toolbox for Structural Identifiability Analysis of Biological Models , 2022 .

[25]  Maria Pia Saccomani,et al.  DAISY: A new software tool to test global identifiability of biological and physiological systems , 2007, Comput. Methods Programs Biomed..

[26]  Simo Srkk,et al.  Bayesian Filtering and Smoothing , 2013 .

[27]  K. Worden,et al.  Data processing and experiment design for the restoring force surface method, part II: Choice of excitation signal , 1990 .

[28]  Saltelli Andrea,et al.  Global Sensitivity Analysis: The Primer , 2008 .

[29]  A. Saltelli,et al.  Importance measures in global sensitivity analysis of nonlinear models , 1996 .

[30]  Lennart Ljung,et al.  On global identifiability for arbitrary model parametrizations , 1994, Autom..

[31]  Alan Henderson,et al.  Rapid Reserve Generation from a Francis Turbine for System Frequency Control , 2017 .

[32]  Yong Huang,et al.  Hierarchical sparse Bayesian learning for structural damage detection: Theory, computation and application , 2017 .

[33]  J. Hensman,et al.  Parameter estimation and model selection for a class of hysteretic systems using Bayesian inference , 2012 .

[34]  E. Walter,et al.  Global approaches to identifiability testing for linear and nonlinear state space models , 1982 .

[35]  K. Shuler,et al.  Nonlinear sensitivity analysis of multiparameter model systems , 1977 .

[36]  Hulin Wu,et al.  Modeling and Estimation of Kinetic Parameters and Replicative Fitness of HIV-1 from Flow-Cytometry-Based Growth Competition Experiments , 2008, Bulletin of mathematical biology.

[37]  Rudolph van der Merwe,et al.  The unscented Kalman filter for nonlinear estimation , 2000, Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373).

[38]  Andrew W. Smyth,et al.  Application of the unscented Kalman filter for real‐time nonlinear structural system identification , 2007 .

[39]  Jann N. Yang,et al.  Sequential non-linear least-square estimation for damage identification of structures with unknown inputs and unknown outputs , 2007 .

[40]  P. Caravani,et al.  Recursive Least-Squares Time Domain Identification of Structural Parameters , 1977 .

[41]  Andrew W. Smyth,et al.  On the Performance of Online Parameter Estimation Algorithms in Systems with Various Identifiability Properties , 2017, Front. Built Environ..

[42]  I. Sobola,et al.  Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates , 2001 .

[43]  Xiaohua Xia,et al.  On Identifiability of Nonlinear ODE Models and Applications in Viral Dynamics , 2011, SIAM Rev..

[44]  Keith Worden,et al.  An introduction to structural health monitoring , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[45]  Masaki Yamakita,et al.  On the estimation of systems with discontinuities using continuous-discrete unscented Kalman filter , 2014, 2014 American Control Conference.

[46]  Oleg Gendelman,et al.  Energy pumping in nonlinear mechanical oscillators : Part I : Dynamics of the underlying Hamiltonian systems , 2001 .

[47]  Onur Avci,et al.  Iterated square root unscented Kalman filter for nonlinear states and parameters estimation: three DOF damped system , 2015 .

[48]  S. I. Kabanikhin,et al.  Identifiability of mathematical models in medical biology , 2016, Russian Journal of Genetics: Applied Research.

[49]  Eleni Chatzi,et al.  The unscented Kalman filter and particle filter methods for nonlinear structural system identification with non‐collocated heterogeneous sensing , 2009 .

[50]  Alexander F. Vakakis,et al.  Experimental study of non-linear energy pumping occurring at a single fast frequency , 2005 .

[51]  Kais Atallah,et al.  The effect of Duffing-type non-linearities and Coulomb damping on the response of an energy harvester to random excitations , 2012 .

[52]  Thomas R. B. Grandjean,et al.  Structural Identifiability of Equivalent Circuit Models for Li-Ion Batteries , 2017 .

[53]  James L. Beck,et al.  Bayesian Updating and Model Class Selection for Hysteretic Structural Models Using Stochastic Simulation , 2008 .

[54]  Will Usher,et al.  SALib: An open-source Python library for Sensitivity Analysis , 2017, J. Open Source Softw..

[55]  Chung Bang Yun,et al.  Identification of Linear Structural Dynamic Systems , 1982 .

[56]  Nicolette Meshkat,et al.  On Finding and Using Identifiable Parameter Combinations in Nonlinear Dynamic Systems Biology Models and COMBOS: A Novel Web Implementation , 2014, PloS one.

[57]  A. Saltelli,et al.  Making best use of model evaluations to compute sensitivity indices , 2002 .

[58]  Simo Särkkä,et al.  On Unscented Kalman Filtering for State Estimation of Continuous-Time Nonlinear Systems , 2007, IEEE Trans. Autom. Control..

[59]  C. Fortuin,et al.  Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory , 1973 .

[60]  A. Saltelli,et al.  A quantitative model-independent method for global sensitivity analysis of model output , 1999 .

[61]  Eva Riccomagno,et al.  Structural identifiability analysis of some highly structured families of statespace models using differential algebra , 2004, Journal of mathematical biology.

[62]  Holger Fröhlich,et al.  Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance , 2009, BMC Systems Biology.

[63]  Martin Mönnigmann,et al.  Systematic identifiability testing for unambiguous mechanistic modeling – application to JAK-STAT, MAP kinase, and NF-κB signaling pathway models , 2009, BMC Systems Biology.

[64]  Stefano Mariani,et al.  Unscented Kalman filtering for nonlinear structural dynamics , 2007 .

[65]  Ilya M. Sobol,et al.  Sensitivity Estimates for Nonlinear Mathematical Models , 1993 .

[66]  R. Bellman,et al.  On structural identifiability , 1970 .